Skip to main content

Generic Constitutive Ingredients in CSSM Models for Sands

  • Conference paper
Modern Trends in Geomechanics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 106))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arulmoli, K., Muraleetharan, K.K., Hossain, M.M. and Fruth, L.S. (1992): VELACS: verification of liquefaction analyses by centrifuge studies; laboratory testing program - soil data report, The Earth Technology Corporation

    Google Scholar 

  2. Been, K. and Jefferies, M.G. (1999): A state parameter for sands, Geotechnique, 35 (2),99-112

    Google Scholar 

  3. Dafalias, Y.F. and Manzari, M.T. (1999): Modeling of fabric effect on the cyclic loading response of granular soils, Proceedings of the 13th ASCE Engineering Mechanics Specialty Conference, 13-16 June, Baltimore, Maryland (in CDROM)

    Google Scholar 

  4. Dafalias, Y.F. and Manzari, M.T. (2004): A simple plasticity sand model accounting for fabric change effects, J. Eng. Mech. ASCE, 130 (6), 622-634

    Article  Google Scholar 

  5. Dafalias, Y.F., Papadimitriou, A.G. and Li, X.S. (2004): Sand plasticity model accounting for inherent fabric anisotropy, J. Eng. Mech. ASCE, 130 (11), 1319-1333

    Article  Google Scholar 

  6. Li, X.S. and Dafalias, Y.F. (2000): Dilatancy for cohesionless soils, Geotechnique, 50 (4),449-460

    Article  Google Scholar 

  7. Li, X.S. and Dafalias, Y.F. (2002): Constitutive modeling of inherently anisotropic sand behavior, J. Geotech. Geoenviron. Eng. ASCE, 128 (10), 868-880

    Article  Google Scholar 

  8. Li, X.S. and Dafalias, Y.F. (2004): A constitutive framework for anisotropic sand including non-proportional loading, Geotechnique, 54 (1), 41-55

    Google Scholar 

  9. Li, X.S. and Wang, Y. (1998): Linear representation of steady-state line for sand, J. Geotech. Geoenviron. Eng. ASCE, 124 (12), 1215-1217

    Article  Google Scholar 

  10. Li, X.S., Dafalias, Y.F. and Wang, Z.L. (1999): State dependent dilatancy in critical state constitutive modeling of sand, Can. Geotech. J. 36 (4), 599-611

    Article  Google Scholar 

  11. Manzari, M.T. and Dafalias, Y.F. (1997): A critical state two-surface plasticity model for sands, Geotechnique, 47 (2), 255-272

    Article  Google Scholar 

  12. Nakata, Y., Hyodo, M., Murata, H. and Yasufuku, N. (1998): Flow deformation of sands subjected to principal stress rotation, Soils Found. 38 (2), 115-128

    Google Scholar 

  13. Papadimitriou, A.G. and Bouckovalas, G.D. (2002): Plasticity model for sand under small and large cyclic strains: a multiaxial formulation, Soil Dyn. Earthquake Eng. 22 (3), 191-204

    Google Scholar 

  14. Papadimitriou, A.G., Bouckovalas, G.D. and Dafalias, Y.F. (2001): Plasticity model for sand under small and large cyclic strains, J. Geotech. Geoenviron. Eng. 127 (11), 973-983

    Article  Google Scholar 

  15. Papadimitriou, A.G., Dafalias, Y.F. and Yoshimine, M. (2005): Plasticity mod- eling of the effect of sample preparation method on sand response, Soils Found. 40 (2),109-124

    Google Scholar 

  16. Verdugo, R. and Ishihara, K. (1996): The steady state of sandy soils, Soils Found. 36 (2), 81-92

    Google Scholar 

  17. Wan, R.G. and Guo, P.J. (2004): Stress dilatancy and fabric dependencies on sand behavior, J. Eng. Mech. ASCE, 130 (6), 635-645

    Article  Google Scholar 

  18. Wang, Z.L., Dafalias, Y.F. and Shen, C.K. (1990): Bounding surface hypoplasticity model for sand, J. Eng. Mech. ASCE, 116 (5), 983-1001

    Article  Google Scholar 

  19. Wang, Z.L., Dafalias Y.F., Li, X.S. and Makdisi, F.I. (2002): State pressure index for modeling sand behavior, J. Geotech. Geoenviron. Eng. ASCE, 128 (6), 511-519

    Article  Google Scholar 

  20. Wood, D.M., Belkheir K. and Liu, D.F. (1994): Strain softening and state parameter for sand modeling, Geotechnique, 44 (2), 335-339

    Article  Google Scholar 

  21. Yang, Z., Elgamal, A. and Parra, E. (2003): Computational model for cyclic mobility and associated shear deformation, J. Geotech. Geoenviron. Eng. ASCE, 129 (12),1119-1127

    Article  Google Scholar 

  22. Yoshimine, M., Ishihara, K. and Vargas, W. (1998): Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand, Soils Found. 38 (3), 177-186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dafalias, Y.F., Papadimitriou, A.G., LI, X.S., Manzari, M.T. (2006). Generic Constitutive Ingredients in CSSM Models for Sands. In: Wu, W., Yu, HS. (eds) Modern Trends in Geomechanics. Springer Proceedings in Physics, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35724-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-35724-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25135-4

  • Online ISBN: 978-3-540-35724-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics