Skip to main content

The Role of Particle Crushing in Granular Materials

  • Conference paper
Modern Trends in Geomechanics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 106))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashby, M.F. and Jones, D.R.H. (1986) Engineering Materials 2. Oxford: Pergamon

    Google Scholar 

  2. Been, K. and Jeffries, M.G. (1985) A state parameter for sands. Géotechnique 35, No. 2, 99-112

    Article  Google Scholar 

  3. Billam, J. (1972) Some aspects of the behaviour of granular materials at high pressures. Stress-strain behaviour of soils. Proceedings of the Roscoe Memorial Symposium (ed. R.H.G. Parry), pp. 69-80

    Google Scholar 

  4. Cundall, P.A. and Strack, O.D.L. (1979) A discrete element model for granular assemblies. Géotechnique 29, No. 1, 47-65

    Article  Google Scholar 

  5. Davidge, R.W. (1979) Mechanical behaviour of ceramics. Cambridge: Cambridge University Press

    Google Scholar 

  6. Feng, T.-W. (2004) Discussion on: Micromechanics of creep of granular materi- als. Géotechnique 54, No. 6, 427-428

    Article  Google Scholar 

  7. Golightly, C.R. (1990) Engineering properties of carbonate sands. Ph.D. disser- tation, Bradford University

    Google Scholar 

  8. Hardin, B.O. (1985) Crushing of soil particles. ASCE Journal of Geotechnical Engineering 111, No. 10, 1177-1192

    Article  Google Scholar 

  9. Harireche, O. and McDowell, G.R. (2003) Discrete element modelling of cyclic loading of crushable aggregates. Granular matter 5, No. 3, 147-151

    Article  MATH  Google Scholar 

  10. Itasca Consulting Group, Inc. (1999) Particle flow code in 3 dimensions

    Google Scholar 

  11. Jâky, J. (1944). A nyugalmi nyomâs tényezöje (The coefficient of earth pressure at rest). Magyar Mérnök és Epitész-Egylet Közlönye (Journal of the Union of Hungarian Engineers and Architects), 355-358

    Google Scholar 

  12. Lade, P.V. and Liu, C-T. (1998) Experimental study of drained creep behaviour of sand. Journal of Engineering Mechanics, ASCE 124, No. 8, 912-920

    Article  Google Scholar 

  13. Leung, C.F., Lee, F.H and Yet, N.S. (1996) The role of particle breakage in pile creep in sand. Canadian Geotechnical Journal 33, 888-898

    Article  Google Scholar 

  14. Lim, W.L., McDowell, G.R. and Collop, A.C. (2004) The application of Weibull statistics to the strength of railway ballast. Granular Matter 6, No. 4, 229-237

    Google Scholar 

  15. Lim, W.L. and McDowell, G.R. (2005) Discrete element modeling of railway ballast. Granular Matter 7, No. 1, 19-29

    Article  MATH  Google Scholar 

  16. McDowell, G.R. (2000) A family of yield loci based on micromechanics. Soils and Foundations 40, No. 6, 133-137

    Google Scholar 

  17. McDowell, G.R. (2001) Statistics of soil particle strength. Géotechnique 51, No. 10, 897-900

    Google Scholar 

  18. McDowell, G.R. (2002) On the yielding and plastic compression of sand. Soils and Foundations 42, No. 1, 139-145

    MathSciNet  Google Scholar 

  19. McDowell, G.R. (2002) A simple non-associated flow model for sand. Granular Matter 4, No. 2, 65-69

    Article  Google Scholar 

  20. McDowell, G.R. (2003) Micromechanics of creep of granular materials. Géotechnique 53, No. 10, 915-916

    Google Scholar 

  21. McDowell, G.R. and Bolton, M.D. (1998) On the micromechanics of crushable aggregates. Géotechnique 48, No. 5, 667-679

    Article  Google Scholar 

  22. McDowell, G.R. and Daniell, C.M. (2001) Fractal compression of soil. Géotechnique 51, No. 2, 173-176

    Google Scholar 

  23. McDowell, G.R. and Harireche, O. (2002a) Discrete element modelling of soil particle fracture. Géotechnique 52, No. 2, 131-135

    Google Scholar 

  24. McDowell, G.R. and Harireche, O. (2002b) Discrete element modelling of yielding and normal compression of sand. Géotechnique 52, No. 4, 299-304

    Google Scholar 

  25. McDowell, G.R. and Humphreys, A. (2002) Yielding of granular materials. Granular Matter 4, No.1, 1-8

    Google Scholar 

  26. McDowell, G.R. and Khan, J.J. (2003) Creep of granular materials. Granular Matter 5, No. 3, 115-120

    Article  Google Scholar 

  27. McDowell, G.R., Nakata, Y. and Hyodo, M. (2002) On the plastic hardening of sand. Géotechnique 52, No. 5, 349-358

    Google Scholar 

  28. Miura, N, Murata, H. and Yasufuku, N. (1984). Stress-strain characteristics of sand in a particle crushing region. Soils and Foundations 24, No. 1, 77-89

    Google Scholar 

  29. Murata, H, Hyodo, M. and Yasufuku, N. (1987). Yield characteristics of dense sand under low and high pressure. Proceeding of Japan Society of Civil Engineers 382, 183-192 (in Japanese)

    Google Scholar 

  30. Roscoe, K.H. and Burland, J.B. (1968). On the generalised stress-strain behaviour of ‘wet’ clay. In Engineering Plasticity (eds. J. Heyman and F.A. Leckie), pp. 535-609. Cambridge: Cambridge University Press

    Google Scholar 

  31. Rowe, P.W. (1962) The stress-dilatancy relation for static equilibrium of as- sembly of particles in contact. Proceedings of Royal Society 267, 500-527

    Article  Google Scholar 

  32. Schofield, A. N. and Wroth, C. P. (1968). Critical State Soil Mechanics. London: McGraw-Hill

    Google Scholar 

  33. Thornton, C., Yin, K. and Adams, M. J. (1996). Numerical simulation of the impact and fragmentation of agglomerates. Journal of Physics D: Application Physics 29, 424-435

    Article  Google Scholar 

  34. Weibull, W. (1951) A statistical distribution function of wide applicability. Journal of Application Mechanics 18, 293-297

    MATH  Google Scholar 

  35. Yu, H. S. (1998) CASM: A unified state parameter model for clay and sand. International Journal for Numerical and Analytical Methods in Geomechanics 33,621-653

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McDowell, G.R. (2006). The Role of Particle Crushing in Granular Materials. In: Wu, W., Yu, HS. (eds) Modern Trends in Geomechanics. Springer Proceedings in Physics, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35724-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-35724-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25135-4

  • Online ISBN: 978-3-540-35724-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics