Skip to main content

Analysis of Mouse Development with Conditional Mutagenesis

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 178))

Abstract

Explorations into the molecular embryology of the mouse have played a vital role in our understanding of the basic mechanisms of gene regulation that govern development and disease. In the last 15 years, these mechanisms have been analyzed with vastly greater precision and clarity with the advent of systems that allow the conditional control of gene expression. Typically, this control is achieved by silencing or activating the gene of interest with site-specific DNA recombination or transcriptional transactivation. In this review, I discuss the application of these technologies to mouse development, focusing on recent innovations and experimental designs that specifically aid the study of the mouse embryo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Issa R, Smyth G, Smoak I, Yamamura K, Meyers EN (2002) Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development 129:4613–4625

    PubMed  CAS  Google Scholar 

  • Ahn K, Mishina Y, Hanks MC, Behringer RR, Crenshaw EB 3rd (2001) BMPR-IA signaling is required for the formation of the apical ectodermal ridge and dorsal-ventral patterning of the limb. Development 128:4449–4461

    PubMed  CAS  Google Scholar 

  • Ahn S, Joyner AL (2004) Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 118:505–516

    Article  PubMed  CAS  Google Scholar 

  • Awatramani R, Soriano P, Rodriguez C, Mai JJ, Dymecki SM (2003) Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nat Genet 35:70–75

    Article  PubMed  CAS  Google Scholar 

  • Backman M, Machon O, Mygland L, van den Bout CJ, Zhong W, Taketo MM, Krauss S (2005) Effects of canonical Wnt signaling on dorso-ventral specification of the mouse telencephalon. Dev Biol 279:155–168

    Article  PubMed  CAS  Google Scholar 

  • Baron U, Gossen M (2000) Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Academic Press

    Google Scholar 

  • Belteki G, Haigh J, Kabacs N, Haigh K, Sison K, Costantini F, Whitsett J, Quaggin SE, Nagy A (2005) Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res 33:e51

    Article  PubMed  Google Scholar 

  • Berger S, Bujard H (2003) Novel mouse models in biomedical research: The power of dissecting pathways by quantitative control of gene activities. In: Offermans S, Hein L (eds) Handb Exp Pharmacol, vol 159. Springer Verlag, Berlin Heidelberg, pp 3–30

    Google Scholar 

  • Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35:215–217

    Article  PubMed  CAS  Google Scholar 

  • Bienz M (2005) beta-Catenin: a pivot between cell adhesion and Wnt signalling. Curr Biol 15: R64–R67

    Article  PubMed  CAS  Google Scholar 

  • Boulet AM, Moon AM, Arenkiel BR, Capecchi MR (2004) The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth. Dev Biol 273:361–372

    Article  PubMed  CAS  Google Scholar 

  • Branda CS, Dymecki SM (2004) Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28

    Article  PubMed  CAS  Google Scholar 

  • Breitman ML, Clapoff S, Rossant J, Tsui LC, Glode LM, Maxwell IH, Bernstein A (1987) Genetic ablation: targeted expression of a toxin gene causes microphthalmia in transgenic mice. Science 238:1563–1565

    Article  PubMed  CAS  Google Scholar 

  • Brodie SG, Deng CX (2003) Mouse models orthologous to FGFR3-related skeletal dysplasias. Pediatr Pathol Mol Med 22:87–103

    Article  PubMed  CAS  Google Scholar 

  • Brockschnieder D, Lappe-Siefke C, Goebbels S, Boesl MR, Nave KA, Riethmacher D (2004) Cell depletion due to diphtheria toxin fragment A after Cre-mediated recombination. Mol Cell Biol 24:7636–7642

    Article  PubMed  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

  • Buchholz F, Angrand PO, Stewart AF (1998) Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16:657–662

    Article  PubMed  CAS  Google Scholar 

  • Buchholz F, Refaeli Y, Trumpp A, Bishop JM (2000) Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxP-mediated recombination in the mouse. EMBO Rep 1:133–139

    Article  PubMed  CAS  Google Scholar 

  • Carpenter B, Lin Y, Stoll S, Raffai RL, McCuskey R, Wang R (2005) VEGF is crucial for the hepatic vascular development required for lipoprotein uptake. Development 132:3293–3303

    Article  PubMed  CAS  Google Scholar 

  • Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679

    PubMed  CAS  Google Scholar 

  • Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Adar R, Yang X, Monsonego EO, Li C, Hauschka PV, Yayon A, Deng CX (1999) Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest 104:1517–1525

    PubMed  CAS  Google Scholar 

  • Chen Y, Stamatoyannopoulos G, Song CZ (2003) Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res 63:4801–4804

    PubMed  CAS  Google Scholar 

  • Chen YT, Bradley A (2000) A new positive/negative selectable marker, puDeltatk, for use in embryonic stem cells. Genesis 28:31–35

    Article  PubMed  CAS  Google Scholar 

  • Chen YT, Levasseur R, Vaishnav S, Karsenty G, Bradley A (2004) Bigenic Cre/loxP, puDeltatk conditional genetic ablation. Nucleic Acids Res 32:e161

    Article  PubMed  CAS  Google Scholar 

  • Chi CL, Martinez S, Wurst W, Martin GR (2003) The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 130:2633–2644

    Article  PubMed  CAS  Google Scholar 

  • Copeland NG, Jenkins NA, Court DL (2001) Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2:769–779

    Article  PubMed  CAS  Google Scholar 

  • Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337

    Article  PubMed  CAS  Google Scholar 

  • Coumoul X, Shukla V, Li C, Wang RH, Deng CX (2005) Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference. Nucleic Acids Res 33:e102

    Article  PubMed  CAS  Google Scholar 

  • Czauderna F, Santel A, Hinz M, Fechtner M, Durieux B, Fisch G, Leenders F, Arnold W, Giese K, Klippel A, Kaufmann J (2003) Inducible shRNA expression for application in a prostate cancer mouse model. Nucleic Acids Res 31:e127

    Article  PubMed  CAS  Google Scholar 

  • Diamond I, Owolabi T, Marco M, Lam C, Glick A (2000) Conditional gene expression in the epidermis of transgenic mice using the tetracycline-regulated transactivators tTA and rTA linked to the keratin 5 promoter. J Invest Dermatol 115:788–794

    Article  PubMed  CAS  Google Scholar 

  • Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4:457–467

    Article  PubMed  CAS  Google Scholar 

  • Dymecki SM, Rodriguez CI, Awatramani RB (2002) Switching on lineage tracers using site-specific recombination. Methods Mol Biol 185:309–334

    PubMed  CAS  Google Scholar 

  • Dymecki SM, Tomasiewicz H (1998) Using Flp-recombinase to characterize expansion of Wnt1-expressing neural progenitors in the mouse. Dev Biol 201:57–65

    Article  PubMed  CAS  Google Scholar 

  • Farago AF, Awatramani RB, Dymecki SM (2006) Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50:205–218

    Article  PubMed  CAS  Google Scholar 

  • Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93:10887–10890

    Article  PubMed  CAS  Google Scholar 

  • Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757

    Article  PubMed  CAS  Google Scholar 

  • Fraser A (2004) Towards full employment: using RNAi to find roles for the redundant. Oncogene 23:8346–8352

    Article  PubMed  CAS  Google Scholar 

  • Friesen H (1936) Spermatogoniales crossing-over bei Drosophila. Zeitschrift fur inductive Abstammungs-und Vererbungslehre 71:501–526

    Article  Google Scholar 

  • Fritsch L, Martinez LA, Sekhri R, Naguibneva I, Gerard M, Vandromme M, Schaeffer L, Harel-Bellan A (2004) Conditional gene knock-down by CRE-dependent short interfering RNAs. EMBO Rep 5:178–182

    Article  PubMed  CAS  Google Scholar 

  • Galileo DS, Gray GE, Owens GC, Majors J, Sanes JR (1990) Neurons and glia arise from a common progenitor in chicken optic tectum: demonstration with two retroviruses and cell type-specific antibodies. Proc Natl Acad Sci U S A 87:458–462

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Otin AL, Guillou F (2006) Mammalian genome targeting using site-specific recombinases. Front Biosci 11:1108–1136

    Article  PubMed  CAS  Google Scholar 

  • Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838

    Article  PubMed  CAS  Google Scholar 

  • Golic KG (1991) Site-specific recombination between homologous chromosomes in Drosophila. Science 252:958–961

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Bujard H (2002) Studying gene function in eukaryotes by conditional gene inactivation. Annu Rev Genet 36:153–173

    Article  PubMed  CAS  Google Scholar 

  • Grieshammer U, Lewandoski M, Prevette D, Oppenheim RW, Martin GR (1998) Muscle-specific cell ablation conditional upon Cre-mediated DNA recombination in transgenic mice leads to massive spinal and cranial motoneuron loss. Dev Biol 197:234–247

    Article  PubMed  CAS  Google Scholar 

  • Grieshammer U, Cebrian C, Ilagan R, Meyers E, Herzlinger D, Martin GR (2005) FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development 132:3847–3857

    Article  PubMed  CAS  Google Scholar 

  • Gulick J, Hewett TE, Klevitsky R, Buck SH, Moss RL, Robbins J (1997) Transgenic remodeling of the regulatory myosin light chains in the mammalian heart. Circ Res 80:655–664

    PubMed  CAS  Google Scholar 

  • Guo C, Yang W, Lobe CG (2002) A Cre recombinase transgene with mosaic, widespread tamoxifen-inducible action. Genesis 32:8–18

    Article  PubMed  CAS  Google Scholar 

  • Guo Q, Loomis C, Joyner AL (2003) Fate map of mouse ventral limb ectoderm and the apical ectodermal ridge. Dev Biol 264:166–178

    Article  PubMed  CAS  Google Scholar 

  • Habets PE, Clout DE, Lekanne Deprez RH, van Roon MA, Moorman AF, Christoffels VM (2003) Cardiac expression of Gal4 causes cardiomyopathy in a dose-dependent manner. J Muscle Res Cell Motil 24:205–209

    Article  PubMed  CAS  Google Scholar 

  • Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M, Taketo MM (1999) Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. Embo J 18:5931–5942

    Article  PubMed  CAS  Google Scholar 

  • Harfe BD (2005) MicroRNAs in vertebrate development. Curr Opin Genet Dev 15:410–415

    Article  PubMed  CAS  Google Scholar 

  • Harfe BD, Scherz PJ, Nissim S, Tian H, McMahon AP, Tabin CJ (2004) Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118:517–528

    Article  PubMed  CAS  Google Scholar 

  • Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ (2005) The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A 102:10898–10903

    Article  PubMed  CAS  Google Scholar 

  • Harris KS, Zhang Z, McManus M, Harfe BD, Sun X (2006) Dicer function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci U S A 103:2208–2213

    Article  PubMed  CAS  Google Scholar 

  • Hayashi S, McMahon AP (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 244:305–138

    Article  PubMed  CAS  Google Scholar 

  • Hayashi S, Tenzen T, McMahon AP (2003) Maternal inheritance of Cre activity in a Sox2Cre deleter strain. Genesis 37: 51–53

    Article  PubMed  CAS  Google Scholar 

  • Hebert JM, McConnell SK (2000) Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures. Dev Biol 222:296–306

    Article  PubMed  CAS  Google Scholar 

  • Holland AM, Hale MA, Kagami H, Hammer RE, MacDonald RJ (2002) Experimental control of pancreatic development and maintenance. Proc Natl Acad Sci U S A 99:12236–12241

    Article  PubMed  CAS  Google Scholar 

  • Hornstein E, Mansfield JH, Yekta S, Hu JK, Harfe BD, McManus MT, Baskerville S, Bartel DP, Tabin CJ (2005) The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438:671–674

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Ueno N, Behringer RR (2004) Restriction of BMP4 activity domains in the developing neural tube of the mouse embryo. EMBO Rep 5:734–739

    Article  PubMed  CAS  Google Scholar 

  • Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P, Metzger D (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res 27:4324–4327

    Article  PubMed  CAS  Google Scholar 

  • Indra AK, Li M, Brocard J, Warot X, Bornert JM, Gerard C, Messaddeq N, Chambon P, Metzger D (2000) Targeted somatic mutagenesis in mouse epidermis. Horm Res 54:296–300

    Article  PubMed  CAS  Google Scholar 

  • Indra AK, Dupe V, Bornert JM, Messaddeq N, Yaniv M, Mark M, Chambon P, Metzger D (2005) Temporally controlled targeted somatic mutagenesis in embryonic surface ectoderm and fetal epidermal keratinocytes unveils two distinct developmental functions of BRG1 in limb morphogenesis and skin barrier formation. Development 132:4533–4544

    Article  PubMed  CAS  Google Scholar 

  • Irvine KD, Rauskolb C (2001) Boundaries in development: formation and function. Annu Rev Cell Dev Biol 17:189–214

    Article  PubMed  CAS  Google Scholar 

  • Ivanova A, Signore M, Caro N, Greene ND, Copp AJ, Martinez-Barbera JP (2005) In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A. Genesis 43:129–135

    Article  PubMed  CAS  Google Scholar 

  • Iwao K, Nakamori S, Kameyama M, Imaoka S, Kinoshita M, Fukui T, Ishiguro S, Nakamura Y, Miyoshi Y (1998) Activation of the beta-catenin gene by interstitial deletions involving exon 3 in primary colorectal carcinomas without adenomatous polyposis coli mutations. Cancer Res 58:1021–1026

    PubMed  CAS  Google Scholar 

  • Iwata T, Chen L, Li C, Ovchinnikov DA, Behringer RR, Francomano CA, Deng CX (2000) A neonatal lethal mutation in FGFR3 uncouples proliferation and differentiation of growth plate chondrocytes in embryos. Hum Mol Genet 9:1603–1613

    Article  PubMed  CAS  Google Scholar 

  • James J, Osinska H, Hewett TE, Kimball T, Klevitsky R, Witt S, Hall DG, Gulick J, Robbins J (1999) Transgenic over-expression of a motor protein at high levels results in severe cardiac pathology. Transgenic Res 8:9–22

    Article  PubMed  CAS  Google Scholar 

  • Jaubert J, Cheng J, Segre JA (2003) Ectopic expression of kruppel like factor 4 (Klf4) accelerates formation of the epidermal permeability barrier. Development 130:2767–2777

    Article  PubMed  CAS  Google Scholar 

  • Jeong J, Mao J, Tenzen T, Kottmann AH, McMahon AP (2004) Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev 18:937–951

    Article  PubMed  CAS  Google Scholar 

  • Kan L, Kessler JA (2005) New tool for an old problem: can RNAi efficiently resolve the issue of genetic redundancy? Bioessays 27:14–16

    Article  PubMed  CAS  Google Scholar 

  • Kasim V, Miyagishi M, Taira K (2003) Control of siRNA expression utilizing Cre-loxP recombination system. Nucleic Acids Res Suppl: 255–256

    Google Scholar 

  • Keller RE (1975) Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Dev Biol 42:222–241

    Article  PubMed  CAS  Google Scholar 

  • Kemler R, Hierholzer A, Kanzler B, Kuppig S, Hansen K, Taketo MM, de Vries WN, Knowles BB, Solter D (2004) Stabilization of beta-catenin in the mouse zygote leads to premature epithelial-mesenchymal transition in the epiblast. Development 131:5817–5824

    Article  PubMed  CAS  Google Scholar 

  • Kimmel RA, Turnbull DH, Blanquet V, Wurst W, Loomis CA, Joyner AL (2000) Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes Dev 14:1377–1389

    PubMed  CAS  Google Scholar 

  • Kunath T, Gish G, Lickert H, Jones N, Pawson T, Rossant J (2003) Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nat Biotechnol 21:559–561

    Article  PubMed  CAS  Google Scholar 

  • Lakso M, Sauer B, Mosinger B Jr, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci U S A 89:6232–6236

    Article  PubMed  CAS  Google Scholar 

  • Landsberg RL, Awatramani RB, Hunter NL, Farago AF, DiPietrantonio HJ, Rodriguez CI, Dymecki SM (2005) Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. Neuron 48:933–947

    Article  PubMed  CAS  Google Scholar 

  • Lawrence RJ, Pikaard CS (2003) Transgene-induced RNA interference: a strategy for overcoming gene redundancy in polyploids to generate loss-of-function mutations. Plant J 36:114–121

    Article  PubMed  CAS  Google Scholar 

  • Lawson KA, Pedersen RA (1992) Clonal analysis of cell fate during gastrulation and early neurulation in the mouse. Ciba Found Symp 165:3–21; discussion 21–26

    PubMed  CAS  Google Scholar 

  • Le Douarin N (1982) The Neural Crest. Cambridge University Press, Cambridge

    Google Scholar 

  • Lee KJ, Dietrich P, Jessell TM (2000) Genetic ablation reveals that the roof plate is essential for dorsal interneuron specification. Nature 403:734–740

    Article  PubMed  CAS  Google Scholar 

  • Lee P, Morley G, Huang Q, Fischer A, Seiler S, Horner JW, Factor S, Vaidya D, Jalife J, Fishman GI (1998) Conditional lineage ablation to model human diseases. Proc Natl Acad Sci U S A 95:11371–11376

    Article  PubMed  CAS  Google Scholar 

  • Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2:743–755

    Article  PubMed  CAS  Google Scholar 

  • Lewandoski M, Wassarman KM, Martin GR (1997) Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line. Curr Biol 7:148–151

    Article  PubMed  CAS  Google Scholar 

  • Lewandoski M, Sun X, Martin GR (2000) Fgf8 signalling from the AER is essential for normal limb development. Nat Genet 26:460–463

    Article  PubMed  CAS  Google Scholar 

  • Lickert H, Cox B, Wehrle C, Taketo MM, Kemler R, Rossant J (2005) Dissecting Wnt/beta-catenin signaling during gastrulation using RNA interference in mouse embryos. Development 132:2599–2609

    Article  PubMed  CAS  Google Scholar 

  • Lindeberg J, Mattsson R, Ebendal T (2002) Timing the doxycycline yields different patterns of genomic recombination in brain neurons with a new inducible Cre transgene. J Neurosci Res 68:248–253

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Jenkins NA, Copeland NG (2002) Efficient Cre-loxP-induced mitotic recombination in mouse embryonic stem cells. Nat Genet 30:66–72

    Article  PubMed  CAS  Google Scholar 

  • Lobe CG, Koop KE, Kreppner W, Lomeli H, Gertsenstein M, Nagy A (1999) Z/AP, a double reporter for cre-mediated recombination. Dev Biol 208:281–292

    Article  PubMed  CAS  Google Scholar 

  • Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ (2002) Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33:77–80

    Article  PubMed  CAS  Google Scholar 

  • Logie C, Stewart AF (1995) Ligand-regulated site-specific recombination. Proc Natl Acad Sci U S A 92:5940–5944

    Article  PubMed  CAS  Google Scholar 

  • Long F, Chung UI, Ohba S, McMahon J, Kronenberg HM, McMahon AP (2004) Ihh signaling is directly required for the osteoblast linseage in the endochondral skeleton. Development 131:1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Loonstra A, Vooijs M, Beverloo HB, Allak BA, van Drunen E, Kanaar R, Berns A, Jonkers J (2001) Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc Natl Acad Sci U S A 98:9209–9214

    Article  PubMed  CAS  Google Scholar 

  • Lowe LA, Yamada S, Kuehn MR (2000) HoxB6-Cre transgenic mice express Cre recombinase in extra-embryonic mesoderm, in lateral plate and limb mesoderm and at the midbrain/hindbrain junction. Genesis 26:118–120

    Article  PubMed  CAS  Google Scholar 

  • Lu P, Minowada G, Martin GR (2006) Increasing Fgf4 expression in the mouse limb bud causes polysyndactyly and rescues the skeletal defects that result from loss of Fgf8 function. Development 133:33–42

    Article  PubMed  CAS  Google Scholar 

  • Mallo M, Kanzler B, Ohnemus S (2003) Reversible gene inactivation in the mouse. Genomics 81:356–360

    Article  PubMed  CAS  Google Scholar 

  • Mansfield JH, Harfe BD, Nissen R, Obenauer J, Srineel J, Chaudhuri A, Farzan-Kashani R, Zuker M, Pasquinelli AE, Ruvkun G, Sharp PA, Tabin CJ, McManus MT (2004) MicroRNA-responsive’ sensor’ transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 36:1079–1083

    Article  PubMed  CAS  Google Scholar 

  • Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P (2001) Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105:43–55

    Article  PubMed  CAS  Google Scholar 

  • Matsukura S, Jones PA, Takai D (2003) Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic Acids Res 31:e77

    Article  PubMed  Google Scholar 

  • Matsuoka T, Ahlberg PE, Kessaris N, Iannarelli P, Dennehy U, Richardson WD, McMahon AP, Koentges G (2005) Neural crest origins of the neck and shoulder. Nature 436:347–355

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35

    Article  PubMed  CAS  Google Scholar 

  • Metzger D, Clifford J, Chiba H, Chambon P (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 92:6991–6995

    Article  PubMed  CAS  Google Scholar 

  • Meyers EN, Martin GR (1999) Differences in left-right axis pathways in mouse and chick: functions of FGF8 and SHH. Science 285:403–406

    Article  PubMed  CAS  Google Scholar 

  • Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre-and Flp-mediated recombination. Nat Genet 18:136–141

    Article  PubMed  CAS  Google Scholar 

  • Mill P, Mo R, Fu H, Grachtchouk M, Kim PC, Dlugosz AA, Hui CC (2003) Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev 17:282–294

    Article  PubMed  CAS  Google Scholar 

  • Moon AM, Boulet AM, Capecchi MR (2000) Normal limb development in conditional mutants of Fgf4. Development 127:989–996

    PubMed  CAS  Google Scholar 

  • Moon AM, Capecchi MR (2000) Fgf8 is required for outgrowth and patterning of the limbs. Nat Genet 26:455–459

    Article  PubMed  CAS  Google Scholar 

  • Nagel AC, Maier D, Krauss S, Mezger M, Preiss A (2004) Neurogenic phenotypes induced by RNA interference with bHLH genes of the Enhancer of split complex of Drosophila melanogaster. Genesis 39:105–114

    Article  PubMed  CAS  Google Scholar 

  • Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109

    Article  PubMed  CAS  Google Scholar 

  • Nelson DK, Williams T (2004) Frontonasal process-specific disruption of AP-2alpha results in postnatal midfacial hypoplasia, vascular anomalies, and nasal cavity defects. Dev Biol 267:72–92

    Article  PubMed  CAS  Google Scholar 

  • Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199

    Article  PubMed  CAS  Google Scholar 

  • Novina CD, Sharp PA (2004) The RNAi revolution. Nature 430:161–164

    Article  PubMed  CAS  Google Scholar 

  • Ornitz DM (2005) FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev 16:205–213

    Article  PubMed  CAS  Google Scholar 

  • Ornitz DM, Moreadith RW, Leder P (1991) Binary system for regulating transgene expression in mice: targeting int-2 gene expression with yeast GAL4/UAS control elements. Proc Natl Acad Sci U S A 88:698–702

    Article  PubMed  CAS  Google Scholar 

  • Palmiter RD, Behringer RR, Quaife CJ, Maxwell F, Maxwell IH, Brinster RL (1987) Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50:435–443

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Lin MH, Tian X, Cheng HT, Gridley T, Shen J, Kopan R (2004) gamma-secretase functions through Notch signaling to maintain skin appendages but is not required for their patterning or initial morphogenesis. Dev Cell 7:731–743

    Article  PubMed  CAS  Google Scholar 

  • Perantoni AO, Timofeeva O, Naillat F, Richman C, Pajni-Underwood S, Wilson C, Vainio S, Dove LF, Lewandoski M (2005) Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development 132:3859–3871

    Article  PubMed  CAS  Google Scholar 

  • Perl AK, Wert SE, Nagy A, Lobe CG, Whitsett JA (2002) Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc Natl Acad Sci U S A 99:10482–10487

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez CI, Dymecki SM (2000) Origin of the precerebellar system. Neuron 27:475–486

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, Stewart AF, Dymecki SM (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25:139–140

    Article  PubMed  CAS  Google Scholar 

  • Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Ihrig MM, McManus MT, Gertler FB, Scott ML, Van Parijs L (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33:401–406

    Article  PubMed  CAS  Google Scholar 

  • Ruest LB, Hammer RE, Yanagisawa M, Clouthier DE (2003) Dlx5/6-enhancer directed expression of Cre recombinase in the pharyngeal arches and brain. Genesis 37:188–194

    Article  PubMed  CAS  Google Scholar 

  • Saam JR, Gordon JI (1999) Inducible gene knockouts in the small intestinal and colonic epithelium. J Biol Chem 274:38071–38082

    Article  PubMed  CAS  Google Scholar 

  • Sadek S, Bell SC (1996) The effects of the antihormones RU486 and tamoxifen on fetoplacental development and placental bed vascularisation in the rat: a model for intrauterine fetal growth retardation. Br J Obstet Gynaecol 103:630–641

    PubMed  CAS  Google Scholar 

  • Sandy P, Ventura A, Jacks T (2005) Mammalian RNAi: a practical guide. Biotechniques 39:215–224

    PubMed  CAS  Google Scholar 

  • Sato M, Tanigawa M (2005) Production of CETD transgenic mouse line allowing ablation of any type of specific cell population. Mol Reprod Dev

    Google Scholar 

  • Sauer B (2002) Cre/lox: one more step in the taming of the genome. Endocrine 19:221–228

    Article  PubMed  CAS  Google Scholar 

  • Schmidt EE, Taylor DS, Prigge JR, Barnett S, Capecchi MR (2000) Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc Natl Acad Sci U S A 97:13702–13707

    Article  PubMed  CAS  Google Scholar 

  • Schonig K, Schwenk F, Rajewsky K, Bujard H (2002) Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Res 30:e134

    Article  PubMed  Google Scholar 

  • Schwenk F, Kuhn R, Angrand PO, Rajewsky K, Stewart AF (1998) Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res 26:1427–1432

    Article  PubMed  CAS  Google Scholar 

  • Seibler J, Zevnik B, Kuter-Luks B, Andreas S, Kern H, Hennek T, Rode A, Heimann C, Faust N, Kauselmann G, Schoor M, Jaenisch R, Rajewsky K, Kuhn R, Schwenk F (2003) Rapid generation of inducible mouse mutants. Nucleic Acids Res 31:e12

    Article  PubMed  CAS  Google Scholar 

  • Seibler J, Kuter-Luks B, Kern H, Streu S, Plum L, Mauer J, Kuhn R, Bruning JC, Schwenk F (2005) Single copy shRNA configuration for ubiquitous gene knockdown in mice. Nucleic Acids Res 33:e67

    Article  PubMed  Google Scholar 

  • Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL (2005) Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 45:27–40

    PubMed  CAS  Google Scholar 

  • Shin MK, Levorse JM, Ingram RS, Tilghman SM (1999) The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature 402:496–501

    Article  PubMed  CAS  Google Scholar 

  • Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71

    Article  PubMed  CAS  Google Scholar 

  • Soshnikova N, Zechner D, Huelsken J, Mishina Y, Behringer RR, Taketo MM, Crenshaw EB 3rd, Birchmeier W (2003) Genetic interaction between Wnt/beta-catenin and BMP receptor signaling during formation of the AER and the dorsal-ventral axis in the limb. Genes Dev 17:1963–1968

    Article  PubMed  CAS  Google Scholar 

  • Sparks AB, Morin PJ, Vogelstein B, Kinzler KW (1998) Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res 58:1130–1134

    PubMed  CAS  Google Scholar 

  • Spemann H (1901) Uber Correlationen in der Entwicklung des Auges. Verhand Anat Ges 15:61–79

    Google Scholar 

  • Stern C (1936) Somatic Crossing over and segregation in Drosophila melanogaster. Genetics 21:625–730

    PubMed  Google Scholar 

  • Sun X, Meyers EN, Lewandoski M, Martin GR (1999) Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev 13:1834–1846

    PubMed  CAS  Google Scholar 

  • Sun X, Lewandoski M, Meyers EN, Liu YH, Maxson RE Jr, Martin GR (2000) Conditional inactivation of Fgf4 reveals complexity of signalling during limb bud development. Nat Genet 25:83–86

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Mariani FV, Martin GR (2002) Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418:501–508

    Article  PubMed  CAS  Google Scholar 

  • Tam PP, Beddington RS (1987) The formation of mesodermal tissues in the mouse embryo during gastrulation and early organogenesis. Development 99:109–126

    PubMed  CAS  Google Scholar 

  • Testa G, Schaft J, van der Hoeven F, Glaser S, Anastassiadis K, Zhang Y, Hermann T, Stremmel W, Stewart AF (2004) A reliable lacZ expression reporter cassette for multipurpose, knockout-first alleles. Genesis 38:151–158

    Article  PubMed  CAS  Google Scholar 

  • Tiscornia G, Singer O, Ikawa M, Verma IM (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci U S A 100:1844–1848

    Article  PubMed  CAS  Google Scholar 

  • Tiscornia G, Tergaonkar V, Galimi F, Verma IM (2004) CRE recombinase-inducible RNA interference mediated by lentiviral vectors. Proc Natl Acad Sci U S A 101:7347–7351

    Article  PubMed  CAS  Google Scholar 

  • Toniatti C, Bujard H, Cortese R, Ciliberto G (2004) Gene therapy progress and prospects: transcription regulatory systems. Gene Ther 11:649–657

    Article  PubMed  CAS  Google Scholar 

  • Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E (2004) Defining the epithelial stem cell niche in skin. Science 303:359–363

    Article  PubMed  CAS  Google Scholar 

  • Utomo AR, Nikitin AY, Lee WH (1999) Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nat Biotechnol 17:1091–1096

    Article  PubMed  CAS  Google Scholar 

  • van de Wetering M, Oving I, Muncan V, Pon Fong MT, Brantjes H, van Leenen D, Holstege FC, Brummelkamp TR, Agami R, Clevers H (2003) Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 4:609–615

    Article  PubMed  CAS  Google Scholar 

  • Ventura A, Meissner A, Dillon CP, McManus M, Sharp PA, van Parijs L, Jaenisch R, Jacks T (2004) Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci U S A 101:10380–10385

    Article  PubMed  CAS  Google Scholar 

  • Verheyden JM, Lewandoski M, Deng C, Harfe BD, Sun X (2005) Conditional inactivation of Fgfr1 in mouse defines its role in limb bud establishment, outgrowth and digit patterning. Development 132:4235–4245

    Article  PubMed  CAS  Google Scholar 

  • Vincent SD, Robertson EJ (2003) Highly efficient transgene-independent recombination directed by a maternally derived SOX2CRE transgene. Genesis 37:54–56

    Article  PubMed  CAS  Google Scholar 

  • Voiculescu O, Charnay P, Schneider-Maunoury S (2000) Expression pattern of a Krox-20/Cre knock-in allele in the developing hindbrain, bones, and peripheral nervous system. Genesis 26:123–126

    Article  PubMed  CAS  Google Scholar 

  • Vooijs M, Jonkers J, Berns A (2001) A highly efficient ligand-regulated Cre recombinase mouse line shows that LoxP recombination is position dependent. EMBO Rep 2:292–297

    Article  PubMed  CAS  Google Scholar 

  • Voronina VA, Kozlov S, Mathers PH, Lewandoski M (2005) Conditional alleles for activation and inactivation of the mouse Rx homeobox gene. Genesis 41:160–4

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Spatz MK, Kannan K, Hayk H, Avivi A, Gorivodsky M, Pines M, Yayon A, Lonai P, Givol D (1999) A mouse model for achondroplasia produced by targeting fibroblast growth factor receptor 3. Proc Natl Acad Sci U S A 96:4455–4460

    Article  PubMed  CAS  Google Scholar 

  • Wetts R, Fraser SE (1991) Microinjection of fluorescent tracers to study neural cell lineages. Development Suppl 2:1–8

    Google Scholar 

  • Wikenheiser-Brokamp KA (2004) Rb family proteins differentially regulate distinct cell lineages during epithelial development. Development 131:4299–4310

    Article  PubMed  CAS  Google Scholar 

  • Yu HM, Liu B, Chiu SY, Costantini F, Hsu W (2005) Development of a unique system for spatiotemporal and lineage-specific gene expression in mice. Proc Natl Acad Sci U S A 102:8615–8620

    Article  PubMed  CAS  Google Scholar 

  • Zervas M, Millet S, Ahn S, Joyner AL (2004) Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron 43:345–357

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220

    Article  PubMed  CAS  Google Scholar 

  • Zinyk DL, Mercer EH, Harris E, Anderson DJ, Joyner AL (1998) Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Curr Biol 8:665–668

    Article  PubMed  CAS  Google Scholar 

  • Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L (2005) Mosaic analysis with double markers in mice. Cell 121:479–492

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lewandoski, M. (2007). Analysis of Mouse Development with Conditional Mutagenesis. In: Feil, R., Metzger, D. (eds) Conditional Mutagenesis: An Approach to Disease Models. Handbook of Experimental Pharmacology, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35109-2_10

Download citation

Publish with us

Policies and ethics