Skip to main content

Biotechnological Approaches to Improve Phytoremediation Efficiency for Environment Contaminants

  • Chapter
Book cover Environmental Bioremediation Technologies

6. Conclusion

Phytoremediation is an eco-friendly cost-effective technology, as compared to classical physical, chemical and even to the microorganisms-based bioremediation techniques. It is useful for the remediation of sites contaminated with non-biodegradable toxic heavy metals, hazardous air pollutants like oxides of nitrogen and sulfur, and photoxidants like ozone, recalcitrant organic pollutants, like chlorinated pesticides, organophosphate, insecticides, petroleum hydrocarbons, polynuclear aromatic hydrocarbons (PAHs), sulphonated biphenyl (PCBs) and chlororinated solvents (TCE, PCE) etc.

Amongst the major limitations of the technique, tolerance level of plants to high contamination zones, treatment of only bioavailable fraction of the contaminants and remediation of the contaminants largely from within a meter of the surface of the soil and within a few meters of the surface of the groundwater can be counted. The agro-climatic and hydrological conditions may also limit the plant growth on the treatment site and chances of entering of the contaminants in food chain through animals /insects that eat plant material containing the contaminants need to be attended while advocating for this technology. Plant biomass and agricultural vegetable wastes can also be used as adsorbant systems for the remediation of waterbodies from organic and inorganic pollutant’s contaminations. Due to the low cost of the technique, the low disturbance in the in situ treatments, a higher probability for the public acceptance and an easy handling, this technology indicates a strong potential as a natural, or improved, solar energy driven remediation approach for the treatments of the various kinds of the pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso JM, Hirayama T, Roman G, Nourizadesh S, Ecker JR (1999) EIN2, a bifunctional transductor of ethylene and stress response in Arabidopsis. Science 284:2148–2152

    Article  Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni+2 tolerance and Pb+2 hypersensitivity in transgenic plants. Plant J 20:171–182

    Article  Google Scholar 

  • Arisi ACM, Mocquot B, Lagriffoul A, Mench M, Foyer CH, Jouanin L (2000) Response to cadmium in leaves of transformed poplars over expressing ?-glutamylcysteine synthetase. Physiol Plant 109:143–149

    Article  Google Scholar 

  • AssuncaĂ¡o AGL, Martins PDC, Folter SD, Vooijs R, Schat H, Aatrss MGM (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 24:217–226

    Article  Google Scholar 

  • Baker AJM, Brooks RP (1989) Terrestrial higher plants which hyperaccumulate metal element: A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith J (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos GS (eds) Phytoremediation of Contaminated Soils and Water, CRC Press Inc., L, pp 85–107

    Google Scholar 

  • Belouchi A, Kwan T, Gros P (1997) Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Mol Biol 33:1085–1092

    Article  Google Scholar 

  • Bennett FA, Tyler EK, Brooks RR, Gregg PEH, Stewart RB (1998) Fertilization of hyperaccumulators to enhance their potential for phytoremediation and phytomining. In: Brooks RR (ed) Plants that Hyperaccumulates Heavy Metals, CAB International, UK, pp 249–259

    Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EAH (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal contaminated mine tailings. J Environ Qual 32:432–440

    Google Scholar 

  • Bharti N, Singh RP (1993) Growth and nitrate reduction by Sesamum indicum cv. PB-1 respond differentially to lead. Phytochemistry 33:531–534

    Article  Google Scholar 

  • Bharti N, Singh RP (1994) Antagonistic effect of sodium chloride to differential heavy metal toxicity regarding biomass accumulation and nitrate assimilation in Sesamum indicum seedlings in a lead enriched environment. Phytochemistry 35:1157–1161

    Article  Google Scholar 

  • Bharti N, Singh RP, Sinha SK (1996) Effect of calcium chloride on heavy metal induced alterations in growth and nitrate assimilation of Sesamum indicum seedlings. Phytochemistry 41:105–109

    Article  Google Scholar 

  • Bizily SD, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nature Biotech 18:213–217

    Article  Google Scholar 

  • Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation ofmethylmercury pollution: mer B expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci USA 96:6806–6813

    Article  Google Scholar 

  • Blaudez D, Kohler A, Martin F, Sanders D, Chalot M (2003) Poplar metal tolerance protein 1 confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif. Plant Cell 15:2911–2928

    Article  Google Scholar 

  • Brooks PR, Morison RS, Reeves RD, Dudey TP, Akman Y (1979) Hyperaccumulation of nickel by Alyssum linneaus (cruciferae). Proc Roy Soc Lond Biol Sci 203:387–403

    Google Scholar 

  • Campanella B, Paul R (2000) Presence, in the rhizosphere and leaf extracts of Zucchini (Cucurbita pepo L.) and Melon (Cucumis melo L.), of molecules capable of increasing the apparent aqueous solubility of hydrophobic pollutants. Int J Phytorem 2:145–158

    Article  Google Scholar 

  • Campanella B, Bock C, Schroeder P (2002) Phytoremediation to increase the degradation of PCBs and PCDD/Fs potential and limitations. Environ Sci Pollut Res 9:73–85

    Google Scholar 

  • Chaney RL, Li YM, Brown SL, Homer FA, Malik M, Angle JS, Baker AJM, Reeves RD, Chin M (2000) Improving metal hyperaccumulator wild plants to develop commercial Phytoextration system: Approaches and progress. In: Terry N, Banuelos G, Vangronsveld J (eds) Phytoremediation of Contaminated Water and Soil, CRC Press, pp 129–158

    Google Scholar 

  • Chaudhary TM, Hayes WJ, Khan AG, Khoo CS (1998) Phytoremediation-focusing on accumulator plants that remediate metal-contaminated soils. Aust J Ecotoxic 4:37–51

    Google Scholar 

  • Chen J, Zhou J, Goldsbrough PB (1997) Characterization of phytochelatin synthase from tomato. Physiol Plant 101:165–172

    Article  Google Scholar 

  • Clemens S, Kims EJ, Neumann D, Schroeder JI (1999) Tolerance of toxic heavy metal by a gene family of phytochetin synthase from plants and yeast. EMBO J 18:3325–3333

    Article  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, cadmiumsensitive mutant, cad2-1 of Arabidopsis thaliana is deficient in ?-glutamylcysteine synthetase. Plant J 16:73–78

    Article  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  Google Scholar 

  • Companella B, Paul R (2000) Presence, in the rhizosphere and leaf extracts of Zucchini (Cucurbita pepo L.) and Melon (Cucumis melo L.) of molecules capable of increasing the apparent aqueous solubility of hydrophobic pollutants. Int J Phytoremed 2:145–158

    Article  Google Scholar 

  • Connoly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    Article  Google Scholar 

  • Cosio C, Martinoia E, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi careulescens and Arabidopsis halleri at the leaf celluar level. Plant Physiol 134:716–725

    Article  Google Scholar 

  • Cristofaro AD, Zhon DH, He JZ, Violante A (1998) Comparison between oxalate and humate on copper adsorption on goethite. Fresenius Environ Bull 7:570–576

    Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation PlantPhysiol 110:715–719

    Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  Google Scholar 

  • Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. In: Sparks DL (ed) Advances in Agronomy, vol 56, Academic Press London, pp 55–114

    Google Scholar 

  • Dabas S, Singh RP, Sawheny V (1995) Nitrogen fixation and ammonia assimilation in mungbean nodules during lead contamination. Physiol Mol Biol Plants 1:135–140

    Google Scholar 

  • Datta R, Sarkar D (2004) Biotechnology in phytoremediation of metal-contaminated soils. Proc Indian Natn Sci Acad, B70:99–108

    Google Scholar 

  • de Borne FD, Elmayan T, de Roton C, de Hys L, Tempfer M (1998) Cadmium partitioning in transgenic tobacco plants expressing a mammalian metallothionein gene. Mol Breed 4:83–90

    Article  Google Scholar 

  • de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichenes D, Terry N (1999a) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–573

    Article  Google Scholar 

  • de Souza MP, Huang CP, Chee N, Terry N (1999b) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209:259–263

    Article  Google Scholar 

  • Dhankher OP, Shasti NA, Rosen BP, Fuhrmann M, Meagher RB (2003) Increased cadmium tolerance and accumulation by pants by expressing bacterial arsenate reducatse. New Phytol 159:431–441

    Article  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and ?-glutamylcysteine synthetase expression. Nature Biotech 20:1140–1145

    Article  Google Scholar 

  • Dietz AC, Schnoor JL (2001) Advances in phytoremediation, Environ. Heath Perspect 109:163–168

    Google Scholar 

  • Drake PMW, Chargelegue D, Vine ND, van Dollewerd CJ Obregon P, Ma JKC (2002) Transgenic plants expressing antibodies: a model for phytoremediation. FASEB J 16:1855–1860

    Article  Google Scholar 

  • Eccles H (1998) Metal contaminated soil-Is natural attention acceptable? Biochem Soc Tran 26:657–661

    Google Scholar 

  • Foley RC, Liang ZM, Singh KB (1997) Analysis of type 1 metallothionein cDNA in Vicia faba. Plant Mol Biol 33:583–591

    Article  Google Scholar 

  • Francova K, Macek, T, Demnerove K, Mackova M (2001) Transgenic plants-a potential tool for decontamination of environmental pollutants. Chemicke Listy 95:630–637

    Google Scholar 

  • Friederich M, Kneer R, Zenk MH (1998) Enzymic synthesis of phytochelatins in gram quantities. Phytochemistry 49:2323–2329

    Article  Google Scholar 

  • Fuentes Bolomy HD (1997) The influence of selected soil parameters on DTPA extractable metals and the uptake of Zea mays (corn), Honours Thesis, University of Western Sydney, Macarthur

    Google Scholar 

  • Gao Y, He J, Ling W, Hu H, Liu F (2003) Effects of organic acids on copper and cadmium desorption from contaminated soils. Environ Int 29:613–618

    Article  Google Scholar 

  • GarciĂ -HernĂ ndez M, Murphy A, Taiz L (1998) Methallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiol 118:387–397

    Article  Google Scholar 

  • Geebelen W, Vangronsveld J, Adriano DC, Poucke LCV, Clijsters H (2002) Effects of Pb-EDTA and EDTA on oxidative stress reaction and mineral uptake in Phaseolus Vulgaris. Physiol Plant 115:377–384

    Article  Google Scholar 

  • Glass JD (1999) US and International Markets for Phytoremediation 1999–2000, Dglass Associates, Inc pp 4

    Google Scholar 

  • Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra S, Glebs YY, Raskin I (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci USA 96:5973–5977

    Article  Google Scholar 

  • Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J Biotech 81:45–53

    Article  Google Scholar 

  • Grill E, Loffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metalbinding peptides of plants, are synthesized from glutathione by a specific rglutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    Article  Google Scholar 

  • Guerinot ML, Eide D (1999) Zeroing in on zinc uptake in yeast and plants. Curr Opin Plant Biol 2:244–249

    Article  Google Scholar 

  • Ha S-B, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell J, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces prombe. Plant Cell 11:1153–1163

    Article  Google Scholar 

  • Hall JL (2002) Cellular mechanism for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  Google Scholar 

  • Han FX, Banin A, Kingery WL, Triplrtt GB, Zhou LX, Zheng SL, Ding WX (2003) New approach to studies of heavy metal redistribution in soil. Adv Env Res 8:113–120

    Article  Google Scholar 

  • Hannink N, Rosser SJ, French CE, Barran A, Murray JAH, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nature Biotech 19:1168–1172

    Article  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Vooij R, Bookum WT, Schat H, Meharg AA (2001) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126:299–306

    Article  Google Scholar 

  • Harvey PJ, Campanella BF, Castro PML, Harms H, Lichtfouse E, Schaeffner AR, Smrcek S, Werck-Reichhart D (2002) Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ Sci Pollut Res 9:29–47

    Google Scholar 

  • Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A, Nakajima M, Yazaki J (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene cup1. Plant Soil 196:277–281

    Article  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GL (2000) Expression of Arabidopsis CAX2 in tobacco; Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    Article  Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995a) Cadmium sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    Article  Google Scholar 

  • Howden R, Andersen CR, Goldsbrough PB, Cobbett CS (1995b) A cadmium sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol 107:1067–1073

    Article  Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead contaminated soils: Role of synthetic chelates in lead Phytoextration. Environ Sci Technol 31:800–805

    Article  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential Zn homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    Article  Google Scholar 

  • Inouhe M, Ito R, Ito S, Sasada N, Tohoyama H, Joho M (2000) Azuki bean cells are hypersensitive to cadmium and do not synthesize phytochelatins. Plant Physiol 123:1029–1036

    Article  Google Scholar 

  • Kabata-Pendias A (1997) Trace metal balances in soil-a current problem in agriculture. In: Adriano DC, Chen ZS, Yang SS, Iskander IK (eds) Biogeochemistry of Trace Metals, Science Reviews Lewis Publishers, New York, pp 139–167

    Google Scholar 

  • Kassal AG, Ghosal D, Goyal A (2002) Phytoremediation of trichloroethylene using hybrid poplar. Physiol Mol Biol Plant 8:3–10

    Google Scholar 

  • Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, Schulin R (2000) Enhancement of Phytoextration of Zn, Cd and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol 34:1778–1783

    Article  Google Scholar 

  • Kelley BC, Tuovinen OH (1988) Microbial oxidation of minerals in mine tailings. In: Solomons W, Foerstner V (eds) Chemistry and Biology of Solid Waste, Springer Verlag, Berlin, pp 33–53

    Google Scholar 

  • Kerkeb L, Krämer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716–724

    Article  Google Scholar 

  • Khan AG, Kuek C, Chaudhary TM, Khaoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 21:197–207

    Article  Google Scholar 

  • Klapheck R, Schlunz S, Bergmann L (1995) Synthesis of phytochelatins and homophytochelatins in Pisum sativum L. Plant Physiol 107:515–521

    Google Scholar 

  • Kumar G, Singh RP, Sushila (1993) Nitrate assimilation and biomass production in Sesamum indicum L. seedling in a lead enriched environment. Water Air Soil Poll 66:163–171

    Article  Google Scholar 

  • KĂ¼pper H, Mijovilvovich A, Meyer-Klaucke W, Kroneck PMH (2004) Tissue and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulators Thlaspi careulscens (Ganges ecotype) revealed by x-ray absorption spectroscopy. Plant Physiol 134:748–757

    Article  Google Scholar 

  • Lee S, Moon JS, Ko T-S, Petro D, Goldsbrough PB, Korban SS (2003a) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Article  Google Scholar 

  • Lee L, Bae H, Jeong J, Lee JY, Yang YY, Hwang I, Martinoia E, Lee Y (2003b) Functional expressions of a bacterial heavy metal transporter in Arabidopsis enhance resistance to and decrease uptake of heavy metals. Plant Physiol 133:589–596

    Article  Google Scholar 

  • Leopold I, GĂ¼nther D, Schmidt J, Neumann D (1999) Phytochelatins and heavy metal tolerance. Phytochemistry 50:1323–1328

    Article  Google Scholar 

  • Li YM, Chanery RL, Angle JS, Baker AJM (2000) Phytoremediation of heavy metal contaminated soils, In: Wise DL et al (eds) Bioremediation of Contaminated Soils, Marcel Dekker, New York, pp 837–884

    Google Scholar 

  • Lombi E, Tearall KL, Howarth JR, Zhao F-J, Hawkesford MJ, McGrath SP (2002) Influence of iron status on cadmium and zinc uptake by different ecotype of the hyperaccumulator Thlaspi caerulescens. Plant Physiol, 128:1359–1367

    Article  Google Scholar 

  • Ma JE, Namoto K (1996) Effective regulation of iron acquisition in graminaceous plants. The role of mugeneic acid as phytosiderophores. Physiol Plant 97:609–617

    Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for removal of organics in environmental remediation. Biotechnol Advanc 18:23–34

    Article  Google Scholar 

  • Maiti RK, Pinero JLH, Oreja JAG, Santiago DL (2004) Plant based bioremediation and mechanisms of heavy metal tolerance of plants: a review. Proc Indian Natn Sci Acad B70:1–12

    Google Scholar 

  • Marser P, Thomine S, Schroeder JI, Ward JM, Hirschi H, Sze IN, Talke A, Amtmann F, Maathuis MJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationship within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elements and organic pollutants. Curr Opin Plant Bio 3:153–162

    Article  Google Scholar 

  • Mehmannavaz R, Prasher SO, Ahmad D (2002) Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium melilotii. Process Biochem 37:955–963

    Article  Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica Napus L. and Nicotiana tabacum L. plants. Thero Appl Genet 78:161–168

    Article  Google Scholar 

  • Morikawa H, Takahashi M (2000) Remediation of soil, water and air by naturally occurring and transgenic plants. In: Proc Gamma Field Symposia (No. 39) Institute of Radiation Breeding NIAR, MAFF, Japan, pp 81–104

    Google Scholar 

  • Morikawa H, Takahashi M, Kawamur Y (2002) Metabolism of nitrogen dioxide in plants-assimilation, dissimilation and novel nitrogen metabolites. Physiol Mol Biol Plants 8:19–29

    Google Scholar 

  • Morikawa H, Takahashi M, Hakata M, Matsubara T, Sakamoto A (2005) Higher plants and metabolism of oxides of nitrogen, In: Singh RP, Jaiwal PK (eds) Molecular Strategies to Improve Nitrogen Use Efficiency in Plants, Studium Press, LLC, Honston, Texas, USA (In Press)

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal contaminated soil and ground water: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  • Muratova A, HĂ¼bner T, Tischer S, Turkovskaya O, Möder M, Kuschk P (2003) Plantrhizosphere-microflora association during phytoremediation of PAH-contaminated soil. Int J Phytoremed 5:137–151

    Google Scholar 

  • Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotype: correlation with copper tolerance. Plant Physiol 109:945–954

    Article  Google Scholar 

  • Nedelkoska TV, Doran PM (2000) Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotech Bioeng 67:607–615

    Article  Google Scholar 

  • Nie L, Shah S, Rashid A, Burd GI, Dixon G, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361

    Article  Google Scholar 

  • Noij M, Saito M, Nakamura M, Aono M, Saji H, Saito K (2001) Cysteine synthase overexpression in tobacco confers tolerance to sulfur containing environmental pollutants. Plant Physiol 126:973–980

    Article  Google Scholar 

  • Pan AH, Yan MZ, Tie F, Li LG, Chen ZL, Ru B (1994) Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341–351

    Article  Google Scholar 

  • Pan X, Zhang B, Cobb GP (2005) Transgenic plants: environmental benefits and risks. Physiol Mol Biol Plants (In Press)

    Google Scholar 

  • Pawlowska TE, Blaszkowski A, Ruhling A (1996) The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza 6:499–505

    Article  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian A (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator, Thlaspi caerulescence. Proc Natl Acad Sci USA 97:4956–4960

    Article  Google Scholar 

  • Persans MW, Yan X, Patnoe ML, Krämer U, Salt DE (1999) Molecular dissection of the role of histidine in nickel hypertaccumulation in Thlaspi goesingense (Halacsy). Plant Physiol 121:1117–1126

    Article  Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D (2003) Enhancing phytoremediative ability of Pisum sativum by EDTA application. Phytochemistry 64:1239–1251

    Article  Google Scholar 

  • Pierzynski GM, Schwab AP (1993) Bioavailability of zinc, cadmium and lead in metal contaminated alluvial soil. J Environ Qual 22:247–254

    Google Scholar 

  • Pilon M, Ower JD, Garifullina GF, Kurihara T, Mihara H, Easki N, Pioln-Smits EAH (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiol 131:1250–1257

    Article  Google Scholar 

  • Pioln-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP-sulfurylase in Indian mustard leads to increased selenate uptake, reduction and tolerance. Plant Physiol 119:123–132

    Article  Google Scholar 

  • Pilon-Smits EAH, Zhu YL, Sears T, Terry N (2000) Overexpression of glutathione reductase in Brassica juncea: Effects of cadmium accumulation and tolerance. Physiol Plant 110:445–460

    Article  Google Scholar 

  • Pitchel J, Kuroiwa K, Sawyer HT (1999) Distribution of Pb, Cd and Ba in soils and plants of two contaminated soils. Environ. Pollut 110:171–178

    Google Scholar 

  • Prasad MNV (2004) Phytoremediation of metals in the environment for sustainable development. Proc Indian Natn Sci Acad B70:71–98

    Google Scholar 

  • Raab A, Feldmann J, Meharg AA (2004)The nature of arsenic phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122

    Article  Google Scholar 

  • Raskin I, Kumar PBAN, Dushennov S, Salt D (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotech 5:285–290

    Article  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from environment. Curr Opin Biotechnol 8:221–226

    Article  Google Scholar 

  • Raskin I, Ensely B (2000) Phytoremediation of toxic metals using plants, Wiley & Sons, Inc., Canada, ISBN.471: 19254–19256

    Google Scholar 

  • Raskin I (1996) Plant genetic engineering may help with environmental cleanup. Proc Natl Acad Sci USA 93:3164–3166

    Article  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides, structure, biosynthesis and function. Plant Physiol 109:1141–1149

    Article  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants; the case for organic acids, phytin and metallothioneins. Cell Biochem Biophys 31:19–48

    Article  Google Scholar 

  • Rosser SJ, French CE, Bruce NC (2001) Engineering plants for the phytodetoxification of explosives. In vitro Cell Dev Biol Plant 37:330–333

    Article  Google Scholar 

  • Rugh CL, Senecoff JE, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nature Biotech 16:925–930

    Article  Google Scholar 

  • Rugh CL, Wilde HD, Stacks NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacteria merA gene. Proc Natl Acad Sci USA 93:3182–3187

    Article  Google Scholar 

  • Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344–1352

    Article  Google Scholar 

  • Salt D, Rauser W (1995) Mg-ATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet L, Raskin L (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  Google Scholar 

  • Salt DE (2001) Nickel hyperaccumulation in Thlaspi goesigense: A scientific travelogue. Cellular Dev Biol Plant 37:326–329

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Mol Biol 49:643–668

    Article  Google Scholar 

  • Saxena PK, Krishna Raj S, Dan T, Perras MR, Vettakkorumakankav NN (1999) Phytoremedaition of heavy metal contaminated and polluted soils. In: Prasad MNV, Hayemeyer J (eds) Heavy Metal Stress in Plants: From Molecules to Ecosystems. Springer-Verlag Berlin Heidelberg, pp 305–329

    Google Scholar 

  • Schroeder P, Harvey PJ, SchwitzguĂ©bel JP (2002) Prospects for the phytoremediation of organic pollutants in Europe. Environ Sci Pollut Res 9:1–13

    Google Scholar 

  • SchwitzguĂ©bel J-P (2004) Potential of phytoremediation, an emerging green technology: European trends and outlook. Proc Indian Natn Sci Acad B70:131–152

    Google Scholar 

  • SchwitzguĂ©bel J-P, Van Der Lelie D, Baket A, Glass DJ, Vangronsveld J (2002) Phytoremediation: European and American trends, success, obstacles and needs. J Soil Sediments 2:91–99

    Google Scholar 

  • Sekhar KC, Chary NS, Kamala CT, Anjaneyulu Y (2004) Utilization of plant metal interaction for environmental management: from a general disbelief to universal acceptance. Proc Indian Natn Sci Acad B70:13–30

    Google Scholar 

  • Shetty KG, Banks MK, Hetrick BA, Schwab AP (1995) Effects of mycorrhizae and fertilizer amendments on zinc tolerance of plants. Enviro Pollut 88:307–314

    Article  Google Scholar 

  • Siciliana SD, Germida JJ (1998) Mechanisms of phytoremediations: biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79

    Article  Google Scholar 

  • Singh RP, Bharti N, Kumar G (1994a) Differential toxicity of heavy metals to growth and nitrate reductase activity of Sesamum indicum seedling. Phytochemistry 35:1153–1156

    Article  Google Scholar 

  • Singh RP, Maheshwari R, Sinha SK (1994b) Recovery of lead caused decrease in biomass accumulation of mungbean (Vigna radiate L.) seedlings by K2HPO4 and CaCl2. Indian J Exp Biol 32:507–510

    Google Scholar 

  • Singh RP, Dabas S, Chaudhary A (1996) Recovery of Pb+2 caused inhibition of chlorophyll biosynthesis in leaves of Vigna radiate (L) Wilczek by inorganic salts. Indian J Exp Biol 34:1129–1132

    Google Scholar 

  • Singh RP, Chaudhary A, Gulati A, Dahiya HC, Jaiwal PK, Sengar RS (1997b) Response of plants to salinity in interaction with other abiotic and biotic factors. In: Jaiwal PK, Singh RP, Gulati A (eds) Strategies for Improving Salt Tolerance in Higher Plants. Oxford & IBH Pub Co Pvt Ltd Delhi, Calcutta (India) and Enfield (USA), pp 25–54

    Google Scholar 

  • Singh RP, Dabas S, Chaudhary A, Masheswari R (1997/1998c) Effect of lead on nitrate reductase activity and alleviation of lead toxicity by inorganic salts and 6-benzylaminopurine. Biol Plant 40:399–404

    Article  Google Scholar 

  • Singh RP, Jaiwal PK (2003) Arsenic phytoremetaion: new hopes for old problem. Physiol Mol Biol Plants 9:1–3

    Google Scholar 

  • Singh RP, Tripathi RD, Sinha SK, Maheshwari R, Srivastava HS (1997a) Response of higher plants to lead contaminated environment. Chemosphere 34:2467–2493

    Article  Google Scholar 

  • Singh RP, Singh HP, Sharma A, Rizvi SMH, Jaiwal PK (2001) Indian mustard: a potential phytoremediator of heavy metal contaminated soil. Brassica 3:31–39

    Google Scholar 

  • Singh RP, Tripathi RD, Dabas S, Rizvi SMH, Ali MB, Sinha SK, Gupta DK, Mishra S, Rai UN (2003) Effect of lead on growth and nitrate assimilation of Vigna radiate (L.) Wilczek seedling in a salt affected environment. Chemosphere 52:1245–1250

    Article  Google Scholar 

  • Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from environments, Curr Opin Biotech 8:221–226

    Article  Google Scholar 

  • Song WY, Sohn EJ, Mortinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nature Biotech 21:914–919

    Article  Google Scholar 

  • Song W-Y, Martinoia E, Lee J, Kim D, Kim D-Y, Vogt E, Shim D, Choi KS, Hwang I, Lee Y (2004) A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiol 135:1027–1039

    Article  Google Scholar 

  • Tabata K, Kashiwagi S, Mori H, Ueguchi C, Mizuno T (1997) Cloning of cDNA encoding a putative metal transporting P-type ATPase from Arabidopsis thaliana. Biochim Biophys Acta 1326:1–6

    Article  Google Scholar 

  • Takahashi M, Sasaki Y, Ida S, Morikawa H (2001) Nitrate reductase gene enrichment improves assimilation of nitrogen dioxide in Arabidopsis. Plant Physiol 126:731–741

    Article  Google Scholar 

  • Thangavel P, Subbhuraam CV (2004) Phytoextraction; Role of hyperaccumulators in metal contaminated soils. Proc Indian Natn Sci Acad B70:109–130

    Google Scholar 

  • Trapp S, Karlson U (2001) Aspects of phytoremediation of organic pollutants. J Soils Sediments 1:1–7

    Google Scholar 

  • Treeby M, Marschner H, Romheld V (1989) Mobilization of iron and other micronutrient cations from a calcareous soil by plant borne, microbial and synthetic metal chelators. Plant Soil 114:217–226

    Article  Google Scholar 

  • van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnes AN, Schat H, Verleij JAC, Hooykass PJJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 19:1047–1055

    Article  Google Scholar 

  • van Huysen T, Abdel-Ghany S, Hale KL, Leduc D, Terry N, Pilon-Smits EAH (2003) Overexpression of cystathionine-?-synthase enhances selenium volatilization in Brassica juncea. Planta 218:71–78

    Article  Google Scholar 

  • Vassil AD, Kapulink Y, Raskin I, Salt DE (1998) The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiol 117: 447–453

    Article  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu Y-P, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110–7115

    Article  Google Scholar 

  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briata FM, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  Google Scholar 

  • Weissenhorn I, Leyval C (1995) Root colonization of maize by a cd-sensitive and a Cdtolerant Glomus mosseae and cadmium uptake in sand culture. Plant Soil 175:233–238

    Article  Google Scholar 

  • Wellburn AR (1990) Why are atmospheric oxides of nitrogen usually phytotoxic and not alterative fertilizers? New Phytol 115:395–429

    Article  Google Scholar 

  • Wellburn FAM, Greissen GP, Lake JA, Mullineaux PM, Wellburn AR (1998) Tolerance to atmospheric ozone in transgenic tobacco over-expressing glutathione synthetase in plastids. Physiol Plant 104:623–629

    Article  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    Article  Google Scholar 

  • Zhang FS, Romheld V, Marschner H (1991) Diurnal rhythm of release of phytosiderophores and uptake rate of zinc in iron-deficient wheat. Plant Nutrit 37:671–678

    Google Scholar 

  • Zhao FJ, Hamon RE, Mc Laughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens enhance metal mobilization. New Phytol 151:613–620

    Article  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119: 73–79

    Article  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing ?-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, R.P., Dhania, G., Sharma, A., Jaiwal, P.K. (2007). Biotechnological Approaches to Improve Phytoremediation Efficiency for Environment Contaminants. In: Singh, S.N., Tripathi, R.D. (eds) Environmental Bioremediation Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34793-4_10

Download citation

Publish with us

Policies and ethics