Skip to main content

Growth and Novel Applications of Epitaxial Oxide Thin Films

  • Chapter

Part of the book series: Topics in Applied Physics ((TAP,volume 105))

Abstract

This chapter addresses key developments in the ability to grow epitaxial oxide films and provides examples of possible applications of these structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • T. E. Jones, W. C. McGinnis, J. S. Briggs: Compact substrate heater for use in an oxidizing environment, Rev. Sci. Instrum. 65, 977 (1994)

    Google Scholar 

  • A. Schmehl, R. R. Schulz, J. Mannhart: Eucentric four-axis ultrahigh vacuum goniometer for reflection high-energy electron diffraction applications, Rev. Sci. Instrum. 76, 123901 (2005)

    Google Scholar 

  • D. B. Lee, G. Simkovich: Oxidation of molybdenum chromium palladium alloys, Oxid. Met. 31, 265 (1989)

    CAS  Google Scholar 

  • I. Zaplatynsky: Volatization of oxides during oxidation of some superalloys at 1200 degrees {C}, Oxid. Met. 11, 289 (1977)

    CAS  Google Scholar 

  • G. R. Wallwork, A. Z. Hed: Some limiting factors in use of alloys at high temperatures, Oxid. Met. 3, 171 (1971)

    CAS  Google Scholar 

  • J. C. Clark, J. P. Maria, K. J. Hubbard, D. G. Schlom: An oxygen-compatible radiant substrate heater for thin film growth at substrate temperatures up to 1050 degrees {C}, Rev. Sci. Instrum. 68, 2538 (1997)

    CAS  Google Scholar 

  • R. C. Estler, N. S. Nogar, R. E. Muenchausen, X. D. Wu, S. Foltyn, A. R. Garcia: A versatile substrate heater for use in highly oxidizing atmospheres, Rev. Sci. Instrum. 62, 437 (1991)

    CAS  Google Scholar 

  • P. Vase, Y. Q. Shen, T. Holst, M. Hagensen, T. Freltoft: Substrate heater for large-area {YBa2Cu3Ox} films growth without electrical feedthroughs, Physica C 235–240, 641 (1994)

    Google Scholar 

  • M. Orita, H. Ohta, H.Hiramatsu, M. Hirano, S. Den, M. Sasaki, T. Katagiri, H. Mimura, H. Hosono: Pulsed laser deposition system for producing oxide thin films at high temperature, Rev. Sci. Instrum. 72, 3340 (2001)

    CAS  Google Scholar 

  • K. H. Wu, C. L. Lee, J. Y. Juang, T. M. Uen, Y. S. Gou: In-situ growth of {Y1Ba2Cu3O7-x} superconducting thin-films using a pulsed neodymium yttrium-aluminium-garnet laser with {CO2}-laser heated substrates, Appl. Phys. Lett. 58, 1089 (1991)

    CAS  Google Scholar 

  • S. Ohashi, M. Lippmaa, N. Nakagawa, H. Nagasawa, H. Koinuma, M. Kawasaki: Compact laser molecular beam epitaxy system using laser heating of substrate for oxide film growth, Rev. Sci. Instrum. 70, 178 (1999)

    CAS  Google Scholar 

  • M. Lippmaa, T. Furumochi, S. Ohashi, M. Kawasaki, H. Koinuma, T. Satoh, T. Ishida, H. Nagasawa: High-temperature goniometer for thin film growth and ion scattering studies, Rev. Sci. Instrum. 72, 1755 (2001)

    CAS  Google Scholar 

  • T. Koida, D. Komiyama, H. Koinuma, M. Ohtani, M. Lippmaa, M. Kawasaki: Temperature-gradient epitaxy under in situ growth mode diagnostics by scanning reflection high-energy electron diffraction, Appl. Phys. Lett. 80, 565 (2002)

    CAS  Google Scholar 

  • A. C. Westerheim, B. I. Choi, M. I. Flik, M. J. Cima, R. L. Slattery, A. C. Anderson: Radiative substrate heating for high-{T(C)} superconducting thin-film deposition-film-growth-induced temperature variation, J. Vac. Sci. Technol. 10, 3407 (1992)

    CAS  Google Scholar 

  • A. R. Beavitt: A wide-band particle eliminator, Thin Solid Films 1, 69 (1967)

    Google Scholar 

  • H. Dupendant, J. P. Gavigan, D. Givord, A. Lienard, J. P. Rebouillat, Y. Souche: Velocity distribution of micronsized particles in thin-film laser ablation deposition {(LAD)} of metals and oxide superconductors, Appl. Surf. Sci. 43, 369 (1989)

    CAS  Google Scholar 

  • A. Tselev, A. Gorbunov, W. Pompe: Cross-beam pulsed laser deposition: {G}eneral characteristic, Rev. Sci. Instrum. 72, 2665 (2001)

    CAS  Google Scholar 

  • C. Doughty, A. T. Findikoglu, T. Venkatesan: Steady-state pulsed-laser deposition target scanning for improved plume stability and reduced particle density, Appl. Phys. Lett. 66, 1276 (1995)

    CAS  Google Scholar 

  • L. Cultrera, D. Guido, A. Perrone, M. I. Zeifman: Plume separation effect in pulsed laser ablation deposition, Appl. Phys. A 79, 1181 (2004)

    CAS  Google Scholar 

  • J. P. Gong, M. Kawasaki, K. Fujito, R. Tsuchiya, M. Yoshimoto, H. Koinuma: Investigation of precipitate formation on laser ablated {YBa2Cu307}-delta thin-films, Phys. Rev. B 50, 3280 (1994)

    CAS  Google Scholar 

  • N. Kanda, M. Kawasaki, T. Kitajima, H. Koinuma: Diagnosis of precipitate formation in pulsed-laser deposition of {YBa2Cu3O7}-delta by means of in situ laser-light scattering and ex situ atomic force microscopy, Phys. Rev. B 56, 8419 (1997)

    CAS  Google Scholar 

  • R. M. V. Rao, H. Munekata, K. Shimada: Quantum paraelectric {La1/2Na1/2TiO3} films as capacitor dielectrics for temperature- and electric-field-insensitive applications, J. Appl. Phys. 88, 3756 (2000)

    CAS  Google Scholar 

  • P. R. Willmott, J. R. Huber: Pulsed laser vaporization and deposition, Rev. Mod. Phys. 72, 315 (2000)

    CAS  Google Scholar 

  • D. B. Chrisey, G. K. Huber (Eds.): Pulsed Laser Deposition of Thin Films (Wiley, New York 1994)

    Google Scholar 

  • F. G. Will, H. G. {deLorenzi}, K. H. Janora: Conduction mechanism of single-crystal alumina, J. Am. Ceram. Soc. 75, 295 (1992)

    CAS  Google Scholar 

  • R. H. French, D. J. Jones, S. Loughin: Interband electronic-structure of alpha-alumina up to {2167\K}, J. Am. Ceram. Soc 77, 412 (1994)

    Google Scholar 

  • A. J. Pedraza, J. D. Fowlkes, D. H. Lowndes: Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation, Appl. Phys. Lett. 74, 2322 (1999)

    CAS  Google Scholar 

  • A. Jacquot, B. Lenoir, M. O. Boffoué, A. Dauscher: Influence of target morphology on droplet emission and thickness profiles with pulsed laser deposited bismuth films, Appl. Phys. A 69, S195 (1999)

    CAS  Google Scholar 

  • J. C. Miller, J. R. F. Haglund (Eds.): Laser Ablation and Desorption, vol. 30, Experimental Methods in the Physical Sciences (Academic Press, San Diego 1998) p. 84

    Google Scholar 

  • J. M. Huijbregtse, B. Dam, J. H. Hector, R. Griessen: High-quality off-stoichiometric {YBa2Cu3O7}-delta films produced by diffusion-assisted preferential laser ablation, J. Appl. Phys. 86, 6528 (1999)

    CAS  Google Scholar 

  • P. E. Dyer, R. D. Greenough, A. Issa, P. H. Key: Spectroscopic and ion probe measurements of {KRF} laser ablated {y-ba-cu-o} bulk samples, Appl. Phys. Lett. 53, 534 (1988)

    CAS  Google Scholar 

  • M. A. Herman, H. Sitter: Molecular Beam Epitaxy, Fundamentals and Current Status, vol. 7, 2 ed., Springer Series in Materials Science (Springer, Berlin 1996) p. 38

    Google Scholar 

  • P. D. Gupta, R. Bhatanagar, D. D. Bhawalkar: Isotopic enhancement in laser-produced plasmas, J. Appl. Phys. 51, 3422 (1980)

    CAS  Google Scholar 

  • P. A. VanRompay, Z. Zhang, J. A. Nees, P. P. Pronko: Isotope separation and enrichment by ultrafast laser ablation, Proc. SPIE 3934, 43 (2000)

    CAS  Google Scholar 

  • P. P. Pronko, P. A. VanRompay, Z. Zhang, J. A. Nees: Isotope enrichment in laser-ablation plumes and commensurately deposited thin films, Phys. Rev. Lett. 83, 2596 (1999)

    CAS  Google Scholar 

  • L. D. Laude, C. Dicara, K. Kolev, H. Schillinger: Excimer laser ablation: {E}nergy or power density? {A} different approach, Proc. SPIE 5448, 144 (2004)

    CAS  Google Scholar 

  • J. F. M. Cillessen, M. J. M. {de Jong}, X. Croize: Improved uniformity of multielement thin films prepared by off-axis pulsed laser deposition using a new heater design, Rev. Sci. Instrum. 67, 3229 (1996)

    CAS  Google Scholar 

  • A. Wong, R. Liang, M. Gardner, W. N. Hardy: Reproducible growth of highly crystalline {YBa2Cu3O7} thin films on {SrTiO3} by scanning pulsed laser deposition, J. Appl. Phys. 82, 3019 (1997)

    CAS  Google Scholar 

  • H.-C. Li, W. Si, A. D. West, X. X. Xi: Near single crystal-level dielectric loss and nonlinearity in pulsed laser deposited {SrTiO3} thin films, Appl. Phys. Lett. 73, 190 (1998)

    CAS  Google Scholar 

  • M. Lippmaa, N. Nakagawa, M. Kawasaki, S. Ohashi, Y. Inaguma, M. Itoh, H. Koinuma: Step-flow growth of {SrTiO3} thin films with a dielectric constant exceeding 10(4), Appl. Phys. Lett. 74, 3543 (1999)

    CAS  Google Scholar 

  • T. Ohnishi, M. Lippmaa, T. Yamamoto, S. Meguro, H. Koinuma: Improved stoichiometry and misfit control in perovskite thin film formation at a critical fluence by pulsed laser deposition, Appl. Phys. Lett. 87, 241919 (2005)

    Google Scholar 

  • S. K. Hau, K. H. Wong, P. W. Chan, C. L. Choy: Intrinsic resputtering in pulsed-laser deposition of leadzirconate-titanate thin-films, Appl. Phys. Lett. 66, 245 (1995)

    CAS  Google Scholar 

  • B. Dam, J. Rector, M. F. Chang, S. Kars, D. G. Degroot, R. Griessen: Laser-ablation threshold of {YBa2Cu3O6+x}, Appl. Phys. Lett. 65, 1581 (1994)

    CAS  Google Scholar 

  • K. Shibuya, T. Ohnishi, T. Uozumi, M. Lippmaa, H. Koinuma: The effect of annealing on {SrTiO3} field-effect transistor devices, Thin Solid Films 486, 195 (2005)

    CAS  Google Scholar 

  • P. R. Willmott: Deposition of complex multielemental thin films, Prog. Surf. Sci. 76, 163 (2004)

    CAS  Google Scholar 

  • G. Betz, G. K. Wehner: Sputtering of multicomponent materials, Top. Appl. Phys. 52, 11 (1983)

    CAS  Google Scholar 

  • S. M. Rossnagel: Thin film deposition with physical vapor deposition and related technologies, J. Vac. Sci. Technol. A 21, S74 (2003)

    CAS  Google Scholar 

  • A. Matthews: Plasma-based physical vapor deposition surface engineering processes, J. Vac. Sci. Technol. A 21, S224 (2003)

    CAS  Google Scholar 

  • R. A. Baragiola: Sputtering: {S}urvey of observations and derived principles, Philos. Trans. R. Soc. Lond. A 362, 29 (2004)

    CAS  Google Scholar 

  • P. J. Martin: Ion-based methods for optical thin-film deposition, J. Mater. Sci. 21, 1 (1986)

    CAS  Google Scholar 

  • S. M. Rossnagel: Sputter deposition for semiconductor manufacturing, IBM J. Res. Devel. 43, 163 (1999)

    CAS  Google Scholar 

  • U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, J. T. Gudmundsson: Ionized physical vapor deposition {(IPVD)}: {A} review of technology and applications, Thin Solid Films 513, 1 (2006)

    CAS  Google Scholar 

  • M. V. {Ramana Murty}: Sputtering: {T}he material erosion tool, Surf. Sci. 500, 523 (2002)

    Google Scholar 

  • V. S. Smentkowski: Trends in sputtering, Prog. Surf. Sci. 64, 1 (2000)

    CAS  Google Scholar 

  • P. Sigmund: Sputtering by ion bombardment theoretical concepts, Top. Appl. Phys. 47, 9 (1979)

    Google Scholar 

  • H.-U. Habermeier, G. Beddies, B. Leibold, G. H. Lu, G. Wagner: {Y-Ba-Cu-O} high-temperature superconductor thin-film preparation by pulsed laser deposition and {RF}-sputtering – {A} comparative study, Physica C 180, 17 (1991)

    CAS  Google Scholar 

  • E. Kawamura, V. Vahedi, M. A. Lieberman, C. K. Birdsall: Ion energy distributions in {RF} sheaths; review, analysis and simulation, Plasma Sources Sci. Technol. 8, R45 (1999)

    CAS  Google Scholar 

  • L. Fabrega, E. Koller, J. M. Triscone, O. Fischer: Epitaxial growth of "infinite layer" thin films and multilayers by {RF} magnetron sputtering, J. Mater. Res. 13, 2195 (1998)

    CAS  Google Scholar 

  • J. M. E. Harper: Particle bombardment effects in thin film deposition, in O. Auciello, A. Gras-Marti, J. A. Valles-Abarca, D. L. Flamm (Eds.): Plasma Surface Interactions and Processing of Materials (Kluwer Academic, Amsterdam 1990) p. 251

    Google Scholar 

  • C. B. Eom, J. Z. Sun, B. M. Lairson, S. K. Streiffer, A. F. Marshall, K. Yamamoto, S. M. Anlage, J. C. Bravman, T. H. Geballe: Synthesis and properties of {YBa2Cu3O7} thin-films grown insitu by 90-degrees off-axis single magnetron sputtering, Physica C 171, 354 (1990)

    CAS  Google Scholar 

  • M. Stepanova, S. K. Dew: Estimates of differential sputtering yields for deposition applications, J. Vac. Sci. Technol. A 19, 2805 (2001)

    CAS  Google Scholar 

  • J. A. Thornton: Magnetron sputtering – {B}asic physics and application to cylindrical magnetrons, J. Vac. Sci. Technol. 15, 171 (1978)

    CAS  Google Scholar 

  • P. J. Kelly, R. D. Arnell: Magnetron sputtering: {A} review of recent developments and applications, Vacuum 56, 159 (1999)

    Google Scholar 

  • I. Petrov, F. Adibi, J. E. Greene, W. D. Sproul, W. D. Munz: Use of an externally applied magnetic-field to control ion neutral flux ratios incident at the substrate during magnetron sputter deposition, J. Vac. Sci. Technol. A 10, 3283 (1992)

    CAS  Google Scholar 

  • C. R. Aita: Tailored ceramic film growth at low temperature by reactive sputter deposition, Rev. Solid State Mater. Sci. 23, 205 (1998)

    CAS  Google Scholar 

  • J. Musil, P. Baroch, J. Vlcek, K. H. Nam, J. G. Han: Reactive magnetron sputtering of thin films: {P}resent status and trends, Thin Solid Films 475, 208 (2005)

    CAS  Google Scholar 

  • D. W. Pashley: The study of epitaxy on thin surface films, Adv. Phys. 5, 173 (1956)

    Google Scholar 

  • J. C. Woicik, H. Li, P. Zschack, E. Karapetrova, P. Ryan, C. R. Ashman, C. S. Hellberg: Anomalous lattice expansion of coherently strained {SrTiO3} thin films grown on {Si(001)} by kinetically controlled sequential deposition, Phys. Rev. B 73, 024112 (2006)

    Google Scholar 

  • T. B. Massalski: Binary Alloy Phase Diagrams (American Society for Metals, Ohio 1986)

    Google Scholar 

  • C. D. Theis, D. G. Schlom: Cheap and stable titanium source for use in oxide molecular beam epitaxy systems, J. Vac. Sci. Technol. A 14, 2677 (1996)

    CAS  Google Scholar 

  • S. Nayak, D. E. Savage, H. N. Chu, M. G. Lagally, T. F. Kuech: In situ {RHEED} and {AFM} investigation of growth front morphology evolution of {Si(001)} grown by {UHV-CVD}, J. Cryst. Growth 157, 168 (1995)

    CAS  Google Scholar 

  • A. Y. Cho: Growth of periodic structures by molecular-beam method, Appl. Phys. Lett. 19, 467 (1971)

    CAS  Google Scholar 

  • M. H. Yang, C. P. Flynn: Growth of alkali-halides from molecular-beams – global growth-characteristics, Phys. Rev. Lett. 62, 2476 (1989)

    CAS  Google Scholar 

  • M. W. {Chase, Jr.}: NIST-JANAF Thermochemical Tables, 4 ed. (NIST,AIP, 1998)

    Google Scholar 

  • F. J. Walker, R. A. McKee: High temperature stability of molecular-beam epitaxy-grown multilayer ceramic composites – {TiO/Ti2O3}, J. Cryst. Growth 116, 235 (1992)

    CAS  Google Scholar 

  • F. B. Wang, J. Li, P. Wang, X. H. Zhu, M. J. Zhang, Z. H. Peng, S. L. Li, L. P. Yong, Y. F. Chen, X. S. Sun, D. N. Zheng: Effect of oxygen content on the transport properties of {LaTiO3+β/2} thin films, J. Phys. Condens. Mattter 18, 5835 (2006)

    CAS  Google Scholar 

  • D. R. Lide: CRC Handbook of Chemistry and Physics (CRC, Boca Raton 1995)

    Google Scholar 

  • S. A. Chambers: Epitaxial growth and properties of thin film oxides, Surf. Sci. Rep. 39, 105 (2000)

    CAS  Google Scholar 

  • D. D. Berkley, B. R. Johnson, N. Anand, K. M. Beuchamp, L. E. Conroy, A. M. Goldman, J. Maps, K. Mauersberger, M. L. Mecartney, J. Morton, M. Tuominen, Y. J. Zhang: Insitu formation of superconducting {YBa2Cu3O7-x} thin-films using pure ozone vapor oxidation, Appl. Phys. Lett. 53, 1973 (1988)

    CAS  Google Scholar 

  • D. O. Klenov, D. G. Schlom, H. Li, S. Stemmer: The interface between single crystalline (001) {LaAlO3} and (001) silicon, Jpn. J. Appl. Phys 44, L617 (2005)

    CAS  Google Scholar 

  • C. J. Forst, K. Schwarz, P. E. Blochl: Structural and electronic properties of the interface between the high-k oxide {LaAlO3} and {Si(001)}, Phys. Rev. Lett. 95, 137602 (2005)

    Google Scholar 

  • Y. Kado, Y. Arita: Heteroepitxaial growth of {SRO} films on {Si} substrates, J. Appl. Phys. 61, 2398 (1987)

    CAS  Google Scholar 

  • R. A. McKee, F. J. Walker, J. R. Conner, E. D. Specht, D. E. Zelmon: Molecular-beam epitaxy of epitaxial barium silicide, barium oxide, and barium-titanate on silicon, Appl. Phys. Lett. 59, 782 (1991)

    CAS  Google Scholar 

  • O. Nakagawara, M. Kobayashi, Y. Yoshino, Y. Katayama, H. Tabata, T. Kawai: Effects of buffer layers in epitaxial growth of {SrTiO3} thin film on {Si(100)}, J. Appl. Phys. 78, 7226 (1995)

    CAS  Google Scholar 

  • F. J. Walker, R. A. McKee, H. W. Yen, D. E. Zelmon: Optical clarity and wave-guide performance of thin-film perovskites on {MGO}, Appl. Phys. Lett. 65, 1495 (1994)

    CAS  Google Scholar 

  • R. A. McKee, F. J. Walker: {P}atent {N}o. 5,693,140 ({S}eptember 18, 1995)

    Google Scholar 

  • D. Taylor: Thermal expansion data. 1. {B}inary oxides with the sodium chloride and wurtzite structures, Trans. Brit. Ceram. Soc. 83, 5 (1984)

    Google Scholar 

  • H. R. L. D. K. Smith: Low-temperature thermal expansion of {LiH} {MGO} and {CaO}, J. Appl. Crystallogr. 1, 246 (1968)

    Google Scholar 

  • L. Liu, W. A. Bassett: Effect of pressure on crystal-structure and lattice parameters of {BaO}, J. Geophys. Res. 77, 4934 (1972)

    CAS  Google Scholar 

  • J. Lettieri, J. H. Haeni, D. G. Schlom: Critical issues in the heteroepitaxial growth of alkaline-earth oxides on silicon, J. Vac. Sci. Technol. A 20, 1332 (2002)

    CAS  Google Scholar 

  • S. Yadavalli, M. H. Yang, C. P. Flynn: Low-temperature growth of {MGO} by molecular-beam epitaxy, Phys. Rev. B 41, 7961 (1990)

    CAS  Google Scholar 

  • F. J. Walker, R. A. McKee: High-k crystalline gate dielectrics: {A} research perspective, in H. R. Huff, D. C. Gilmer (Eds.): High Dielectric Constant Materials – VLSI MOSFET Applications (Springer, Berlin 2005) p. 607

    Google Scholar 

  • M. H. Yang, C. P. Flynn: Growth of alkakli-halides by molecular-beam epitaxy, Phys. Rev. B 41, 8500 (1990)

    CAS  Google Scholar 

  • E. S. Hellman, E. H. Hartford: Epitaxial solid-solution films of immiscible {MGO} and {CaO}, Appl. Phys. Lett. 64, 1341 (1994)

    CAS  Google Scholar 

  • R. Ramesh, V. G. Keramidas: Metal-oxide heterostructures, Annu. Rev. Mater. Sci. 25, 647 (1995)

    CAS  Google Scholar 

  • D. H. Looney: (1957), {P}atent {N}o. 2,791,758

    Google Scholar 

  • J. A. Morton: (1957), {US} {P}atent {N}o. 2,791,761

    Google Scholar 

  • I. M. Ross: (1957), {US} {P}atent {N}o. 2,791,760

    Google Scholar 

  • W. L. Brown: (1957), {US} {P}atent {N}o. 2,791,759

    Google Scholar 

  • D. G. Schlom, J. H. Haeni, J. Lettieri, C. D. Theis, W. Tian, J. C. Jiang, X. Q. Pan: Oxide nano-engineering using {MBE}, Mater. Sci. Eng. B 87, 282 (2001)

    Google Scholar 

  • J. H. Haeni, C. D. Theis, D. G. Schlom: {RHEED} intensity oscillations for the stoichiometric growth of {SrTiO3} thin films by reactive molecular beam epitaxy, J. Electroceramics 4, 385 (2000)

    CAS  Google Scholar 

  • R. A. McKee, F. J. Walker: {US} {P}atent {N}o. 6,306,668 ({S}eptember 23, 1999)

    Google Scholar 

  • Z. Yu, Y. Liang, C. Overgaard, X. Hu, J. Curless, H. Li, Y. Wei, B. Craigo, D. Jordan, R. Droopad, J. Finder, K. Eisenbeiser, D. Marshall, K. Moore, J. Kulik, P. Fejes: Advances in heteroepitaxy of oxides on silicon, Thin Solid Films 462–463, 51 (2004)

    Google Scholar 

  • R. A. McKee, F. J. Walker, M. F. Chisholm: Physical structure and inversion charge at a semiconductor interface with a crystalline oxide, Science 293, 468 (2001)

    CAS  Google Scholar 

  • F. W. Lytle: X-ray diffractometry of low-temperature phase transformations in strontium titanate, J. Appl. Phys. 35, 2212 (1964)

    CAS  Google Scholar 

  • H. Unoki, T. Sakudo: Electron spin resonance of fe3+ in {SrTiO3} with special reference to 110 degrees {\K} phase transition, J. Phys. Soc. Jpn. 23, 546 (1967)

    CAS  Google Scholar 

  • K. Aso: Residual-stress in damaged {SrTiO3} single crystals, Jpn. J. Appl. Phys. 15, 1243 (1976)

    CAS  Google Scholar 

  • S. Watanabe, T. Hikita, M. Kawai: Cleaning the surface of {SrTiO3}(100) and {LaAlO3}(100) under moderate temperature condition by {Bi} adsorption, J. Vac. Sci. Technol. A 9, 2394 (1991)

    CAS  Google Scholar 

  • T. Terashima, K. Iijima, K. Yamamoto, K. Hirata, Y. Bando, T. Takada: Insitu reflection high-energy electron diffraction observation during growth of {YBa2Cu3O7-x}, Jpn. J. Appl. Phys. 28, L987 (1989)

    CAS  Google Scholar 

  • M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, H. Koinuma: Atomic control of the {SrTiO3} crystal-surface, Science 266, 1540 (1994)

    CAS  Google Scholar 

  • G. Koster, B. L. Kropman, G. J. H. M. Rjinders, D. H. A. Blank, H. Rogalla: Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide, Appl. Phys. Lett. 73, 2920 (1998)

    CAS  Google Scholar 

  • T. Ohnishi, K. Shibuya, M. Lippmaa, D. Kobayashi, H. Kumigashira, M. Oshimam, H. Koinuma: Preparation of thermally stable {TiO2}-terminated {SrTiO3}(100) substrate surfaces, Appl. Phys. Lett. 85, 272 (2004)

    CAS  Google Scholar 

  • R. Sum, H. P. Lang, H.-J. Güntherodt: Scanning force microscopy study of single-crystal substrates used for thin-film growth of high-temperature superconductors, Physica C 242, 174 (1995)

    CAS  Google Scholar 

  • K. Szot, W. Speier: Surfaces of reduced and oxidized {SrTiO3} from atomic force microscopy, Phys. Rev. B 60, 5909 (1999)

    CAS  Google Scholar 

  • Y. Liang, D. A. Bonnell: Atomic structures of reduced {SrTiO3} (001) surfaces, Surf. Sci. Lett. 285, L510 (1993)

    CAS  Google Scholar 

  • U. Balachandran, N. G. Eror: Electrical-conductivity in lanthanum-doped strontium titanate, J. Electrochem. Soc. 129, 1021 (1982)

    CAS  Google Scholar 

  • R. Meyer, R. Waser, J. Helmbold, G. Borchardt: Cationic surface segregation in donor-doped {SrTiO3} under oxidizing conditions, J. Electroceram. 9, 101 (2002)

    CAS  Google Scholar 

  • K. Iwahori, S. Watanabe, M. Kawai, K. Kobayashi, H. Yamada, K. Matsushige: Effect of water adsorption on microscopic friction force on {SrTiO3} (001), Appl. Phys. Lett. 93, 3223 (2003)

    CAS  Google Scholar 

  • J. Fompeyrine, R. Berger, H. P. Lang, J. Perret, E. Machler, G. Cerber, J. P. Locquet: Local determination of the stacking sequence of layered materials, Appl. Phys. Lett. 72, 1697 (1998)

    CAS  Google Scholar 

  • M. Kawasaki, A. Ohtomo, T. Arakane, K. Takahashi, M. Yoshimoto, H. Koinuma: Atomic control of {SrTiO3} surface for perfect epitaxy of perovskite oxides, Appl. Surf. Sci. 107, 102 (1996)

    CAS  Google Scholar 

  • K. Szot, W. Speier, R. Carius, U. Zastrow, W. Beyer: Localized metallic conductivity and self-healing during thermal reduction of {SrTiO3}, Phys. Rev. Lett. 88, 75508 (2002)

    CAS  Google Scholar 

  • M. Lippmaa, K. Takahashi, A. Ohtomo, S. Ohashi, T. Ohnishi, N. Nakagawa, T. Sato, M. Iwatsuki, H. Koinuma, M. Kawasaki: Atom technology for {J}osephson tunnel junctions: {SrTiO3} substrate surface, Mater. Sci. Eng. B 56, 111 (1998)

    Google Scholar 

  • K. Szot, W. Speier, J. Herion, C. Freiburg: Restructuring of the surface region in {SrTiO3}, Appl. Phys. A 64, 55 (1997)

    CAS  Google Scholar 

  • M. Lippmaa, K. Takahashi, S. Ohashi, N. Nakagawa, T. Sato, M. Iwatsuki, H. Koinuma, M. Kawasaki: Dynamics of {SrTiO3} surface during wet etching and high-temperature annealing, Ferroelectrics 224, 373 (1999)

    Google Scholar 

  • M. Lippmaa, M. Kawasaki, A. Ohtomo, T. Sato, M. Iwatsuki, H. Koinuma: Observation of {SrTiO3} step edge dynamics by real-time high-temperature {STM}, Appl. Surf. Sci. 130, 582 (1998)

    Google Scholar 

  • M. Lippmaa, N. Nakagawa, T. Kinoshita, T. Furumochi, M. Kawasaki, H. Koinuma: Growth dyanmics of oxide thin films at temperatures above 1000 degrees {C}, Physica C 335, 196 (2000)

    CAS  Google Scholar 

  • H. F. Kay, P. Vousden: Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties, Philos. Mag. 40, 1019 (1949)

    CAS  Google Scholar 

  • S. Geller, P. M. Raccah: Phase transitions in perovskite-like compounds of rare earths, Phys. Rev. B 2, 1167 (1970)

    Google Scholar 

  • B. C. Chakoumakos, D. G. Schlom, M. Urbanik, J. Luine: Thermal expansion of {LaAlO3} and {(La,Sr)(Al,Ta)O3}, substrate materials for superconducting thin-film device applications, J. Appl. Phys. 83, 1979 (1998)

    CAS  Google Scholar 

  • O. {Chaix-Pluchery}, B. Chenevier, J. J. Robles: Anisotropy of thermal expansion in YAlO3 and NdGaO3, Appl. Phys. Lett. 86, 251911 (2005)

    Google Scholar 

  • I. Utke, C. Klemenz, H. J. Scheel, P. Nüesch: High-temperature {X}-ray measurements of gallates and cuprates, J. Cryst. Growth 174, 813 (1997)

    CAS  Google Scholar 

  • R. Feenstra, L. A. Boatner, J. D. Budai, D. K. Christen, M. D. Galloway, D. B. Poker: Epitaxial superconducting thin-films of YBa2Cu3O7-x on KTaO3 single crystals, Appl. Phys. Lett. 54, 1063 (1989)

    CAS  Google Scholar 

  • T. Konaka, M. Sato, H. Asano, S. Kubo: Relative permittivity and dielectric loss tangent of substrate materials for high-{T}c superconducting film, J. Supercond. 4, 283 (1991)

    CAS  Google Scholar 

  • J. Schubert, O. Trithaveesak, A. Petraru, C. L. Jia, R. Uecker, P. Reiche, D. G. Schlom: Structural and optical properties of epitaxial {BaTiO3} thin films grown on {GdScO3}(110), Appl. Phys. Lett. 82, 3460 (2003)

    CAS  Google Scholar 

  • G. W. Berkstresser, A. J. Valentino, C. D. Brandle: Growth of single-crystals of lanthanum aluminate, J. Cryst. Growth 109, 467 (1991)

    CAS  Google Scholar 

  • D. Reagor, F. Garzon: Dielectric and optical-properties of substrates for high-temperature superconductor films, Appl. Phys. Lett. 56, 2741 (1991)

    Google Scholar 

  • M. Katayama, E. Nomura, N. Kanekama, H. Soejima, M. Aono: Coaxial impact-collision ion-scattering spectroscopy {(CAICISS)} – {A} novel method for surface-structure analysis, Nucl. Instrum. Methods B 33, 857 (1988)

    Google Scholar 

  • J. Konopka, I. Wolff: Dielectric-properties of substrates for deposition of high-{T}c thin-films up to {40\GHz}, IEEE Trans. Microwave Theory Technol. 40, 2418 (1992)

    CAS  Google Scholar 

  • D. J. Tao, H. Wu, X. D. Xu, R. S. Yan, F. Y. Liu, A. P. B. Sinha, X. P. Jiang, H. L. Hu: Czochralski growth of {(La,Sr)(Al,Ta)O3} single crystal, Opt. Mater. 23, 425 (2003)

    CAS  Google Scholar 

  • M. Berkowski, J. Fink-Finowicki, R. Diduszko, P. Byszewski, R. Aleksiyko, R. Kikalejshvili-Domukhovska: Growth and structure of SrAl0.5Ta0.5O3:LaAlO3 solid solutions single crystals, J. Cryst. Growth 257, 146 (2003)

    CAS  Google Scholar 

  • T. Ohnishi, K. Takahashi, M. Nakamura, M. Kawasaki, M. Yoshimoto, H. Koinuma: A-site layer terminated perovskite substrate: {NdGaO3}, Appl. Phys. Lett. 74, 2531 (1999)

    CAS  Google Scholar 

  • D. Schweitzer, T. Bollmeier, B. Stritzker, B. Rauschenbach: Twinning of {YBa2Cu3O7} thin films on different substrates, Thin Solid Films 280, 147 (1996)

    CAS  Google Scholar 

  • M. L. Lucia, J. Santamaria, F. SanchezQuesada, W. Lopera, M. E. Gomez, P. Prieto: Influence of epitaxial properties on the mutual inductance response of high-quality {YBCO} thin films, Physica C 260, 149 (1996)

    CAS  Google Scholar 

  • S. Geller: Crystallographic studies of perovskite-like compounds. 4. {R}are earth scandates, vanadites, galliates, orthochromites, Acta Crystallogr. 10, 243 (1957)

    CAS  Google Scholar 

  • R. L. Sandstrom, E. A. Giess, W. J. Gallagher, A. Segmuller, E. I. Cooper, M. F. Chisholm, A. Gupta, S. Shinde, R. B. Laibowitz: Lanthanum gallate substrates for epitaxial high-temperature superconducting thin films, Appl. Phys. Lett. 53, 1874 (1988)

    CAS  Google Scholar 

  • H. J. Scheel, M. Berkowski, B. Chabot: Substrates for high-temperature superconductors, Physica C 185–189, 2095 (1991)

    Google Scholar 

  • E. Talik, A. Kruczek, H. Sakowska, Z. Ujma, M. Gala, M. Neumann: {XPS} characterisation of neodymium gallate wafers, J. Alloys Compd. 377, 259 (2004)

    CAS  Google Scholar 

  • T. Mihara, K. Shibuya, T. Ohnishi, H. Koinuma, M. Lippmaa: Transport properties of ultrathin oxide films and nanostructures, Thin Solid Films 486, 63 (2005)

    CAS  Google Scholar 

  • W. Prusseit, L. A. Boatner, D. Rytz: Epitaxial {YBa2Cu3O7} growth on {KTaO3} (001) single-crystals, Appl. Phys. Lett. 63, 3376 (1993)

    CAS  Google Scholar 

  • J. R. Thompson, L. A. Boatner, J. O. Thomson: Very low temperature search for superconductivity in semiconducting {KTaO3}, J. Low Temp. Phys. 47, 467 (1982)

    CAS  Google Scholar 

  • L. S. {Senhouse, Jr.}, M. V. {DePaolis, Jr.}, T. C. Loomis: Calcium concentration vs net ionized donor concentration in single-crystal {KTaO3}, Appl. Phys. Lett. 8, 173 (1966)

    CAS  Google Scholar 

  • S. H. Wemple, A. Jayaraman, M. {DiDomenico, Jr.}: Evidence from pressure experiments for electron scattering by ferroelectric lattice mode in {AB\uO3} semiconductors, Phys. Rev. Lett. 17, 142 (1966)

    CAS  Google Scholar 

  • K. Ueno, I. H. Inoue, T. Yamada, H. Akoh, Y. Tokura, H. Takagi: Field-effect transistor based on {KTaO3} perovskite, Appl. Phys. Lett. 84, 3726 (2004)

    CAS  Google Scholar 

  • J. E. Geusic, S. K. Kurtz, T. J. Nelson, S. H. Wemple: Nonlinear dielectric properties of {KTaO3} near its curie point, Appl. Phys. Lett. 2, 185 (1963)

    CAS  Google Scholar 

  • P. Buffat, J. D. Ganière, M. Rappaz, D. Rytz: Natural and etched surfaces in para-electric and ferroelectric KTa1-xNbxO3 – {A} study by scanning electron-microscopy and {X}-ray topography, J. Cryst. Growth 74, 353 (1986)

    CAS  Google Scholar 

  • S. Karimoto, K. Ueda, M. Naito, T. Imai: Single-crystalline superconducting thin films of electron-doped infinite-layer compounds grown by molecular-beam epitaxy, Appl. Phys. Lett. 79, 2767 (2001)

    CAS  Google Scholar 

  • H. M. Christen, L. A. Boatner, J. D. Budai, M. F. Chisholm, L. A. Gea, P. J. Marrero, D. P. Norton: The growth and properties of epitaxial {KNbO3} thin films and {KNbO3}/{KTaO3} superlattices, Appl. Phys. Lett. 68, 1488 (1996)

    CAS  Google Scholar 

  • A. F. Chow, D. J. Lichtenwalner, R. R. Woolcott, T. M. Graettinger, O. Auciello, A. I. Kingon, L. A. Boatner, N. R. Parikh: Epitaxial {KNbO3} thin-films on {KTaO3}, {MgAl2O4}, and {MGO} substrates, Appl. Phys. Lett. 65, 1073 (1994)

    CAS  Google Scholar 

  • Y. Kim, A. Erbil, L. A. Boatner: Substrate dependence in the growth of epitaxial {Pb1-xLaxTiO3} thin films, Appl. Phys. Lett. 69, 2187 (1996)

    CAS  Google Scholar 

  • H. M. Christen, L. A. Boatner, J. D. Budai, M. F. Chisholm, C. Gerber, M. Urbanik: Semiconducting epitaxial films of metastable {SrRu0.5Sn0.5 O3}, Appl. Phys. Lett. 70, 2147 (1997)

    CAS  Google Scholar 

  • N. Ikemiya, A. Kitamura, S. Hara: Surface structures of {{MgO}}(100) and {SrTiO3}(100) as revealed by atomic force microscopy, J. Cryst. Growth 160, 104 (1996)

    CAS  Google Scholar 

  • P. W. Tasker, D. M. Duffy: The structure and properties of the stepped surface of {MgO} and {NiO}, Surf. Sci. 137, 91 (1984)

    CAS  Google Scholar 

  • B. H. Moeckly, S. E. Russek, D. K. Lathrop, R. A. Buhrman, J. Li, J. W. Mayer: Interface stability and the growth of optical quality perovskites on {MgO}, Appl. Phys. Lett. 57, 1687 (1990)

    CAS  Google Scholar 

  • M. Murugesan, H. Obara, Y. Nakagawa, S. Kosaka, H. Yamasaki: Influence of {MgO} substrate annealing on the microwave properties of laser ablated yba2cu3oz thin films, Supercond. Sci. Technol. 17, 113 (2004)

    CAS  Google Scholar 

  • S. S. Perry, P. B. Merrill: Preparation and characterization of {MgO}(100) surfaces, Surf. Sci. 383, 268 (1997)

    CAS  Google Scholar 

  • L. D. Madsen, R. Charavel, J. Birch, B. Svedberg: Assessment of {MgO}(100) and (111) substrate quality by {X}-ray diffraction, J. Cryst. Growth 209, 91 (2000)

    CAS  Google Scholar 

  • Y. Yan, M. F. Chisholm, G. Duscher, A. Maiti, S. J. Pennycook, S. T. Pantelides: Impurity-induced structural transformation of a {MgO} grain boundary, Phys. Rev. Lett. 81, 3675 (1998)

    CAS  Google Scholar 

  • R. V. Smilgys, S. W. Robey, C. K. Chiang, T. J. Hsieh: J. Vac. Sci. Technol. A 11, 1361 (1993)

    CAS  Google Scholar 

  • T. Minamikawa, T. Suzuki, Y. Yonezawa, K. Segawa: Jpn. J. Appl. Phys. 34, 4038 (1995)

    CAS  Google Scholar 

  • R. Souda, Y. Hwang, T. Aizawa, W. Hayami, K. Oyoshi, S. Hishita: {Ca} segregation at the {MgO}(001) surface studied by ion scattering spectroscopy, Surf. Sci. 387, 136 (1997)

    CAS  Google Scholar 

  • C. Duriez, C. Chapon, C. R. Henry, J. M. Rickard: Structrual characterization of {MgO}(100) surfaces, Surf. Sci. 230, 123 (1990)

    CAS  Google Scholar 

  • R. Plass, J. Feller, M. {Gajdardziska-Josifovska}: Morphology of {MgO}(111) surfaces: {A}rtifacts associated with the faceting of polar oxide surfaces into neutral surfaces, Surf. Sci. 414, 26 (1998)

    CAS  Google Scholar 

  • V. E. Henrich: Thermal faceting on (110) and (111) surfaces of {MgO}, Surf. Sci. 57, 385 (1976)

    CAS  Google Scholar 

  • S. Karimoto, M. Naito: Electron-doped infinite-layer thin films with {T_\text{c}} over {40\K} grown on {DyScO3} substrates, Appl. Phys. Lett. 84, 2136 (2004)

    CAS  Google Scholar 

  • W. Chang, J. A. Bellotti, S. W. Kirchoefer, J. M. Pond: Strain tensor effects on {SrTiO3} incipient ferroelectric phase transition, Integr. Ferroelectr. 77, 173 (2005)

    CAS  Google Scholar 

  • J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, D. G. Schlom: Room-temperature ferroelectricity in strained {SrTiO3}, Nature 430, 758 (2004)

    CAS  Google Scholar 

  • K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. Schlom, C. B. Eom: Enhancement of ferroelectricity in strained {BaTiO3} thin films, Science 306, 1005 (2004)

    CAS  Google Scholar 

  • Z. Z. Li, A. Perrin, J. Padiou, M. Sergent, J. Godard: Physical film substrate interactions in {YBa2Cu3O7-x} thin films grown on (001){BaTiO3} single-crystals, Mater. Lett. 7, 178 (1988)

    CAS  Google Scholar 

  • M. K. Lee, T. K. Nath, C. B. Eom, M. C. Smoak, F. Tsui: Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric {BaTiO3} substrate, Appl. Phys. Lett. 77, 3547 (2000)

    CAS  Google Scholar 

  • D. Dale, A. Fleet, J. D. Brock, Y. Suzuki: Dynamically tuning properties of epitaxial colossal magnetoresistance thin films, Appl. Phys. Lett. 82, 3725 (2003)

    CAS  Google Scholar 

  • C. H. Ahn, T. Tybell, L. Antognazza, K. Char, R. H. Hammond, M. R. Beasley, O. Fischer, J. M. Triscone: Local, nonvolatile electronic writing of epitaxial {Pb(Zr0.52Ti0.48)O3/SrRuO3} heterostructures, Science 276, 1100 (1997)

    CAS  Google Scholar 

  • C. H. Ahn, S. Gariglio, P. Paruch, T. Tybell, L. Antognazza, J.-M. Triscone: Electrostatic modulation of superconductivity in ultrathin {GdBa2Cu3O7-x} films, Science 284, 1152 (1999)

    CAS  Google Scholar 

  • K. S. Takahashi, M. Gabay, D. Jaccard, K. Shibuya, T. Ohnishi, M. Lippmaa, J.-M. Triscone: Local switching of two-dimensional superconductivity using the ferroelectric field effect, Nature 441, 195 (2006)

    CAS  Google Scholar 

  • C. H. Ahn, J.-M. Triscone, J. Mannhart: Electric field effect in correlated oxide systems, Nature 424, 1015 (2003)

    CAS  Google Scholar 

  • N. A. Pertsev, A. G. Zembilgotov, A. K. Tagantsev: Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films, Phys. Rev. Lett. 80, 1988 (1998)

    CAS  Google Scholar 

  • M. Dawber, K. M. Rabe, J. F. Scott: Physics of thin-film ferroelectric oxides, Rev. Mod. Phys. 77, 1083 (2005)

    CAS  Google Scholar 

  • M. Dawber, C. Lichtensteiger, M. Cantoni, M. Veithen, P. Ghosez, K. Johnston, K. M. Rabe, J.-M. Triscone: Unusual behavior of the ferroelectric polarization in {PbTiO3}/{SrTiO3} superlattices, Phys. Rev. Lett 95, 177601 (2005)

    CAS  Google Scholar 

  • A. Q. Jiang, J. F. Scott, H. Lu, Z. Chen: Phase transitions and polarizations in epitaxial {BaTiO3}/{SrTiO3} superlattices studied by second-harmonic generation, J. Appl. Phys. 93, 1180 (2003)

    CAS  Google Scholar 

  • S. Rios, A. Ruediger, A. Q. Jiang, J. F. Scott, H. Lu, Z. Chen: Orthorhombic strontium titanate in {BaTiO3–SrTiO3} superlattices, J. Phys. Condens. Matter 15, 305 (2003)

    Google Scholar 

  • K. Johnston, X. Huang, J. B. Neaton, K. M. Rabe: First-principles study of symmetry lowering and polarization in {BaTiO3}/{SrTiO3} superlattices with in-plane expansion, Phys. Rev. B 71, 100103(R) (2005)

    Google Scholar 

  • J. B. Neaton, K. M. Rabe: Theory of polarization enhancement in epitaxial {BaTiO3}/{SrTiO3} superlattices, Appl. Phys. Lett. 82, 1586 (2003)

    CAS  Google Scholar 

  • S. M. Nakhmanson, K. M. Rabe, D. Vanderbilt: Predicting polarization enhancement in multicomponent ferroelectric superlattices, Phys. Rev. Lett. 73, 060101(R) (2006)

    Google Scholar 

  • B. D. Qu, W. L. Zhong, R. H. Prince: Interfacial coupling in ferroelectric superlattices, Phys. Rev. B 55, 11218 (1997)

    CAS  Google Scholar 

  • Y. Q. Ma, J. Shen, X. H. Xu: Coupling effects in ferroelectric superlattice, Solid State Commun. 114, 461 (2000)

    CAS  Google Scholar 

  • K.-H. Chew, Y. Ishibashi, F. G. Shin, H. L. W. Chan: Theory of interface structures in double-layer ferroelectrics, J. Phys. Soc. Jpn. 72, 2364 (2003)

    CAS  Google Scholar 

  • V. A. Stephanovich, I. A. Luk'yanchuk, M. G. Karkut: Domain-enhanced interlayer coupling in ferroelectric/paraelectric superlattices, Phys. Rev. Lett. 94, 047601 (2005)

    CAS  Google Scholar 

  • A. L. Roytburd, S. Zhong, S. P. Alpay: Dielectric anomaly due to electrostatic coupling in ferroelectric-paraelectric bilayers and multilayers, Appl. Phys. Lett. 87, 092902 (2005)

    Google Scholar 

  • S. Zhong, S. P. Alpay, J. V. Mantese: High dielectric tunability in ferroelectric-paraelectric bilayers and multilayer superlattices, Appl. Phys. Lett. 88, 132904 (2006)

    Google Scholar 

  • H. Tabata, H. Tanaka, T. Kawai: Formation of artificial {BaTiO3}/{SrTiO3} superlattices using pulsed-laser deposition and their dielectric properties, Appl. Phys. Lett. 65, 1970 (1994)

    CAS  Google Scholar 

  • D. O'Neill, R. M. Bowman, J. M. Gregg: Dielectric enhancement and {M}axwell–{W}agner effects in ferroelectric superlattice structures, Appl. Phys. Lett. 77, 1520 (2000)

    Google Scholar 

  • J. Sigman, D. P. Norton, H. M. Christen, P. H. Fleming, L. A. Boatner: Antiferroelectric behavior in symmetric {KNbO3}/{KTaO3} superlattices, Phys. Rev. Lett. 88, 097601 (2002)

    CAS  Google Scholar 

  • M. Sepliarsky, S. R. Phillpot, D. Wolf, M. G. Stachiotti, R. L. Migoni:: Ferroelectric properties of {KNbO3}/{KTaO3} superlattices by atomic-level simulation, J. Appl. Phys. 90, 4509 (2001)

    CAS  Google Scholar 

  • M. Sepliarsky, S. R. Phillpot, M. G. Stachiotti, R. L. Migoni: Ferroelectric phase transitions and dynamical behavior in {KNbO3}/{KTaO3} superlattices by molecular-dynamics simulation, J. Appl. Phys. 91, 3165 (2002)

    CAS  Google Scholar 

  • J. C. Jiang, X. Q. Pan, W. Tian, C. D. Theis, D. G. Schlom: Abrupt {PbTiO3}/{SrTiO3} superlattices grown by reactive molecular beam epitaxy, Appl. Phys. Lett. 74, 2851 (1999)

    CAS  Google Scholar 

  • N. Huang, Z. R. Liu, Z. Q. Wu, J. Wu, W. H. Duan, B. L. Gu, X. W. Zhang: Huge enhancement of electromechanical responses in compositionally modulated {Pb(Zr1-xTix)O3}, Phys. Rev. Lett. 91, 067602 (2003)

    Google Scholar 

  • C. Bungaro, K. M. Rabe: Epitaxially strained [001]-{(PbTiO3)(1)(PbZrO3)(1)} superlattice and {PbTiO3} from first principles, Phys. Rev. B 69, 184101 (2004)

    Google Scholar 

  • I. Kanno, S. Hayashi, R. Takayama, T. Hirao: Superlattices of {PbZrO3} and {PbTiO3} prepared by multi-ion-beam sputtering, Appl. Phys. Lett. 68, 328 (1996)

    CAS  Google Scholar 

  • T. Choi, J. Lee: Structural and dielectric properties of artificial {PbZrO3}/{PbTiO3} superlattices grown by pulsed laser deposition, Thin Solid Films 475, 283 (2005)

    CAS  Google Scholar 

  • N. Sai, B. Meyer, D. Vanderbilt: Compositional inversion symmetry breaking in ferroelectric perovskites, Phys. Rev. Lett. 84, 5636 (2000)

    CAS  Google Scholar 

  • M. P. Warusawithana, E. V. Colla, J. N. Eckstein, M. B. Weissman: Artificial dielectric superlattices with broken inversion symmetry, Phys. Rev. Lett. 90, 036802 (2003)

    Google Scholar 

  • H. N. Lee, H. M. Christen, M. F. Chisholm, C. M. Rouleau, D. H. Lowndes: Strong polarization enhancement in asymmetric three-component ferroelectric superlattices, Nature 433, 395 (2005)

    CAS  Google Scholar 

  • H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh: Multiferroic {BaTiO3–CoFe2O4} nanostructures, Science 303, 661 (2004)

    CAS  Google Scholar 

  • J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanthan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh: Epitaxial {BiFeO3} multiferroic thin film heterostructures, Science 299, 1719 (2003)

    CAS  Google Scholar 

  • H. Bea, M. Bibes, M. Sirena, G. Herranz, K. Bouzehouane, E. Jacquet, S. Fusil, P. Paruch, M. Dawber, J. P. Contour, A. Barthelemey: Combining half-metals and multiferroics into epitaxial heterostructures for spintronics, Appl. Phys. Lett. 88, 062502 (2006)

    Google Scholar 

  • F. {Le Marrec}, R. Farhi, M. {El Marssi}, J. L. Dellis, M. G. Karkut, D. Ariosa: Ferroelectric {PbTiO3}/{BaTiO3} superlattices: Growth anomalies and confined modes, Phys. Rev. B 61, R6447 (2000)

    CAS  Google Scholar 

  • A. Ohtomo, H. Y. Hwang: A high-mobility electron gas at the {LaAlO3}/{SrTiO3} heterointerface, Nature 427, 423 (2004)

    CAS  Google Scholar 

  • M. Huijben, G. Rjinders, D. H. A. Blank, S. Bals, S. VanAert, J. Verbeeck, G. VanTendeloo, A. Brinkman, H. Hilgenkamp: Electronically coupled complementary interfaces between perovskite band insulators, Nature Mater. 5, 556 (2006)

    CAS  Google Scholar 

  • C. H. Ahn, K. M. Rabe, J.-M. Triscone: Local polarization in oxide thin films and heterostructures, Science 303, 408 (2004)

    Google Scholar 

  • R. A. {McKee}, F. J. Walker, M. F. Chisholm: Crystalline oxides on silicon: {T}he first five monolayers, Phys. Rev. Lett. 81, 3014 (1998)

    CAS  Google Scholar 

  • D. A. Muller: A sound barrier for silicon?, Nature Mater. 4, 645 (2005)

    CAS  Google Scholar 

  • International {T}echnology {R}oadmap for {S}emiconductors (2005)

    Google Scholar 

  • W. Schottky: Semi-conductor theory in barrier layers, Naturwissenschaften 26, 843 (1938)

    CAS  Google Scholar 

  • R. A. McKee: The interface phase and the {S}chottky barrier for a crystalline dielectric on silicon, Science 300, 1726 (2003)

    CAS  Google Scholar 

  • J. W. Cahn, J. E. Hilliard: Free energy of a nonuniform system. 1. {I}nterfacial free energy, J. Chem. Phys. 28, 258 (1958)

    CAS  Google Scholar 

  • N. Nakagawa, H. Y. Hwang, D. A. Muller: Why some interfaces cannot be sharp, Nature Mater. 5, 204 (2006)

    CAS  Google Scholar 

  • G. Lucovsky, Y. Wu, H. Nimi, V. Misra, J. C. Philips: Bonding constraints and defect formation at interfaces between crystalline silicon and advanced single layer and composite gate dielectrics, Appl. Phys. Lett. 74, 2005 (1999)

    CAS  Google Scholar 

  • R. A. McKee, F. J. Walker, J. R. Conner, E. D. Specht, D. E. Zelmon: Molecular-beam epitaxy of epitaxial barium silicide, barium oxide and barium-titanate on silicon, Appl. Phys. Lett. 59, 782 (1991)

    CAS  Google Scholar 

  • R. A. McKee, F. J. Walker, J. R. Conner, R. Raj: {BaSi2} and thin-film alkaline-earth silicides on silicon, Appl. Phys. Lett. 63, 2818 (1993)

    CAS  Google Scholar 

  • G. J. Norga, C. Marchiori, A. Guiler, J. P. Locquet, C. Rossel, H. Siegwart, D. Caimi, J. Fompeyrine, T. Conard: Phase of reflection high-energy electron diffraction oscillations during {(Ba,Sr)O} epitaxy on {Si(100)}: {A} marker of {Sr} barrier integrity, Appl. Phys. Lett. 87, 262905 (2005)

    Google Scholar 

  • C. D. Wagner, et al.: Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prarie 1979)

    Google Scholar 

  • S. A. Chambers, Y. Liang, Z. Yu, R. Droopad, J. Ramdani: Band offset and structure of {SrTiO3}/{Si(001)} heterojunctions, J. Vac. Sci. Technol. A 19, 934 (2001)

    CAS  Google Scholar 

  • J. Zachariae, H. Pfnur: Growth conditions, stoichiometry, and electronic structure of lattice-matched {SrO/BaO} mixtures on {Si(100)}, Phys. Rev. B 72, 075410 (2005)

    Google Scholar 

  • G. H. Lee, B. C. Shin, I. S. Kim: Critical thickness of {BaTiO3} film on {SrTiO3} (001) evaluated by reflection high-energy electron diffraction, Mater. Lett. 50, 134 (2001)

    CAS  Google Scholar 

  • H. Tabata, H. Tanaka, T. Kawai: Formation of artificial {BaTiO3}/{SrTiO3} superlattices using pulsed-laser deposition and their dielectric properties, Appl. Phys. Lett. 65, 1970 (1994)

    CAS  Google Scholar 

  • S. Jeon, F. J. Walker, C. A. Billman, R. A. McKee, H. Hwang: Electrical characteristics of epitaxially grown {SrTiO3} on silicon for metal-insulator-semiconductor gate dielectric applications, IEEE Electron Device Lett. 24, 218 (2003)

    CAS  Google Scholar 

  • V. Vaithyanathan, J. Lettieri, W. Tian, A. Sharan, A. Vasudevarao, Y. L. Li, A. Kochhar, H. Ma, J. Levy, P. Zschack, J. C. Woicik, L. Q. Shen, V. Gopalan, D. G. Schlom: c-axis oriented epitaxial {BaTiO3} films on (001){Si}, J. Appl. Phys. 100, 024108 (2006)

    Google Scholar 

  • A. {Herrera-Gomez}, F. S. Aquirre-Tostado, Y. Sun, P. Pianetta, Z. Yu, D. Marshall, R. Droopad, W. E. Spicer: Photoemission from the {Sr}/{Si}(001) interface, J. Appl. Phys. 90, 6070 (2001)

    CAS  Google Scholar 

  • H. Mori, H. Ishiwara: Epitaxial-growth of {SrTiO3} films on {Si}(100) substrates using a focused electron beam evaporation method, Jpn. J. Appl. Phys. 30, L1415 (1991)

    CAS  Google Scholar 

  • X. Hu, X. Yao, C. A. Peterson, D. Sarid, Z. Yu, J. Wang, D. S. Marshall, R. Droopad, J. A. Hallmark, W. J. Ooms: The (3 \times 2) phase of {Ba} adsorption on {Si}(001)-2 \times 1, Surf. Sci. 445, 256 (2000)

    CAS  Google Scholar 

  • C. J. Forst, C. R. Ashman, K. Schwarz, P. E. Blochl: The interface between silicon and a high-k oxide, Nature 427, 53 (2004)

    Google Scholar 

  • C. R. Ashman, C. J. Forst, K. Schwarz, P. E. Blochl: First-principles calculations of strontium on {Si}(001), Phys. Rev. B 69, 075309 (2004)

    Google Scholar 

  • Z. Yu, Y. Liang, C. Overgaard, X. Hu, J. Curless, H. Li, Y. Wei, B. Craigo, D. Jordan, R. Droopad, J. Finder, K. Esienbeiser, D. Marshall, K. Moore, J. Kulik, P. Fejes: Advances in heteroepitaxy of oxides on silicon, Thin Solid Films 462–63, 51 (2004)

    Google Scholar 

  • C. Rossel, B. Mereu, C. Marchiori, D. Caimi, M. Sousa, A. Guiller, H. Siegwart, R. Germann, J. P. Locquet, J. Fompeyrine, D. J. Webb, C. Dieker, J. W. Seo: Field-effect transistors with {SrHfO3} as gate oxide, Appl. Phys. Lett. 89, 053506 (2006)

    Google Scholar 

  • Y. Liang, J. Kulik, T. C. Eschrich, R. Droopad, Z. Yu, P. Maniar: Hetero-epitaxy of perovskite oxides on {GaAs}(001) by molecular beam epitaxy, Appl. Phys. Lett. 85, 1217 (2004)

    CAS  Google Scholar 

  • R. F. Klie, Y. Zhu, E. I. Altman, Y. Liang: Atomic structure of epitaxial {SrTiO3}–{GaAs}(001) heterojunctions, Appl. Phys. Lett. 87, 143106 (2005)

    Google Scholar 

  • A. Posadas, J. B. Yau, C. H. Ahn, J. Han, S. Gariglio, K. Johnston, K. M. Rabe, J. B. Neaton: Epitaxial growth of multiferroic {YMnO3} on {GaN}, Appl. Phys. Lett. 87, 171915 (2005)

    Google Scholar 

  • W. A. Doolittle, A. G. Carver, W. Henderson: Molecular beam epitaxy of complex metal-oxides: Where have we come, where are we going, and how are we going to get there?, J. Vac. Sci. Technol. B 23, 1272 (2005)

    CAS  Google Scholar 

  • A. Lin, X. Hong, V. Wood, A. A. Vervkin, C. H. Ahn, R. A. McKee, F. J. Walker, E. D. Specht: Epitaxial growth of {Pb(Zr0.2Ti0.8)O3} on {Si} and its nanoscale piezoelectric properties, Appl. Phys. Lett. 78, 2034 (2001)

    CAS  Google Scholar 

  • K. Eisenbeiser, R. Emrick, R. Droopad, Z. Yu, J. Finder, S. Rockwell, J. Holmes, C. Overgaard, W. Ooms: {GaAs} {MESFETs} fabricated on {Si} substrates using a {SrTiO3} buffer layer, IEEE Electron Device Lett. 23, 300 (2002)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agham-Bayan Posadas .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Posadas, AB., Lippmaa, M., Walker, F.J., Dawber, M., Ahn, C.H., Triscone, JM. (2007). Growth and Novel Applications of Epitaxial Oxide Thin Films. In: Physics of Ferroelectrics. Topics in Applied Physics, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34591-6_6

Download citation

Publish with us

Policies and ethics