Skip to main content

Pines

  • Chapter
Forest Trees

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie WR, Venter JC (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:1651–1656

    PubMed  CAS  Google Scholar 

  • Aimers-Halliday J, Shelbourne CJA, Hong SO (1997) Issues in developing clonal forestry with P. radiata. In: Burdon RD, Moore JM (eds) “IUFRO’ 97 Genetics of Radiata Pine”, Proc IUFRO Conf 1–4 Dec and Workshop 5 Dec, Rotorua, New Zealand. FRI Bull 203:264–272

    Google Scholar 

  • Alazard P (2001) Genetic gain in seeds from first generation seed orchards of maritime pine. Informations Forests, Afocel, France, No 628

    Google Scholar 

  • Alía R, Gil L, Pardos JA (1995) Performance of 43 Pinus pinaster provenances on 5 locations in Central Spain. Silvae Genet 44:75–81

    Google Scholar 

  • Alía R, Moro J, Denis JB (1997) Performance of Pinus pinaster Ait. provenances in Spain: interpretation of the genotype-environment interaction. Can J For Res 27:1548–1559

    Google Scholar 

  • Allona I, Quinn M, Shoop I, Swope K, ST-Cyr S, Carlis J, Rield J, Retzel E, Campbell M, Sederoff R, Whetten RW (1998) Analysis of xylem formation in pine by cDNA sequencing. Proc Natl Acad Sci USA 95:9693–9698

    PubMed  CAS  Google Scholar 

  • Andrew RL, Peakall R, Wallis IR, Wood JT, Knight EJ, Foley WJ (2005) Marker-based quantitative genetics in the wild?: The heritability and genetic correlation of chemical defenses in Eucalyptus. Genetics 171:1989–1998

    PubMed  CAS  Google Scholar 

  • Apiolaza LA, Greaves BL (2001) Why are most breeders not using economic breeding objectives. In: IUFRO Symp “Developing the Eucalypt for the Future”, 10–14 Sept 2001 Valdivia, Chile

    Google Scholar 

  • Arcade A, Faivre-Rampant P, Le Guerroue B, Paques LE, Prat D (1996) Quantitative traits and genetic markers: analysis of a factorial mating design in larch. In: Ahuja MR, Boerjan W, Neale D (eds) Somatic Cell Genetics and Molecular Genetics of Trees. Kluwer, Dordrecht, pp 211–216

    Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Atwood RA, White TL, Huber DA (2002) Genetic parameters and gains for growth and wood properties in Florida source loblolly pine in the southeastern United States. Can J For Res 32:1025–1038

    Google Scholar 

  • Auckland L, Bui T, Zhou Y, Shepherd M, Williams CG (2002) Conifer Microsatellite Handbook. Corporate Press, College Station, TX

    Google Scholar 

  • Avila C, Muñz-Chapuli R, Plomion C, Frigerio J-M, Cánovas FM (2000) Two genes encoding distinct cytosolic glutamine synthetases are closely located in the pine genome. FEBS Lett 477:237–243

    Google Scholar 

  • Bahrman N, Damerval C (1989) Linkage relationships of loci controlling protein amounts in maritime pine (Pinus pinaster Ait). Heredity 63:267–274

    CAS  Google Scholar 

  • Ball RD (2001) Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian Information Criterion. Genetics 159:1351–1364

    PubMed  CAS  Google Scholar 

  • Ball RD (2005) Experimental designs for reliable detection of linkage disequilibrium in unstructured random population association studies. Genetics 170:859–873

    PubMed  CAS  Google Scholar 

  • Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thomas MR, Dry I (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet 111:370–377

    PubMed  CAS  Google Scholar 

  • Beaulieu J, Plourde A, Daoust G, Lamontagne L (1996) Genetic variation in juvenile growth of Pinus strobus in replicated Quebec provenance-progeny tests. For Genet 3:103–112

    Google Scholar 

  • Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Proc 49th Annu Corn and Sorghum Industry Res Conf, ASTA, Washington, DC, pp 250–266

    Google Scholar 

  • Bedell JA, Budiman MA, Nunberg A, Citek RW, Robbins D, Jones J, Flick E, Rholfing T, Fries J, Bradford K, McMenamy J, Smith M, Holeman H, Roe BA, Wiley G, Korf IF, Rabinowicz PD, Lakey N, McCombie WR, Jeddeloh JA, Martienssen RA (2005) Sorghum genome sequencing by methylation filtration. PLoS Biol 3:13

    Google Scholar 

  • Bell JC, Powell M, Devey ME, Moran GF (2004) DNA profiling, pedigree lineage analysis and monitoring in the Australian breeding program of radiata pine. Silvae Genet 53:130–134

    Google Scholar 

  • Blada I (1994) Inter-specific hybridization of Swiss Stone Pine Pinus cembra L. Silvae Genet 43:14–20

    Google Scholar 

  • Borzan Z, Papes D (1978) Karyotype analysis in Pinus: contribution to the standardization of the karyotype analysis and review of some applied techniques. Silvae Genet 27:144–150

    Google Scholar 

  • Bowe LM, Coat G, de Pamphilis CW (2000) Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA 97:4092–4097

    PubMed  CAS  Google Scholar 

  • Bradshaw HD, Foster GS (1992) Marker-aided selection and propagation systems in trees: advantages of cloning for studying quantitative inheritance. Can J For Res 22:1044–1049

    Google Scholar 

  • Bramlett DL, Burris LC (1995) Topworking young scions into reproductively-mature loblolly pine. In: Weir RJ, Hatcher AV (eds) Proc 23rd South For Tree Improv Conf, Asheville, NC, pp 234–241

    Google Scholar 

  • Brendel O, Pot D, Plomion C, Rozenberg P, Guehl JM (2002) Genetic parameters and QTL analysis of ä13C and ring width in maritime pine. Plant Cell Environ 25:945–953

    CAS  Google Scholar 

  • Brettschneider R (1998) RFLP analysis. In: Karp A, Isaac PG, Ingram DS (eds) Molecular Tools for Screening Biodiversity Plants and Animals. Chapman & Hall, London, pp 83–95

    Google Scholar 

  • Brinker M, van Zyl L, Liu WB, Craig D, Sederoff RR, Clapham DH, von Arnold S (2004) Microarray analyses of gene expression during adventitious root development in Pinus contorta. Plant Physiol 135(3):1526–1539

    PubMed  CAS  Google Scholar 

  • Brown GR, Kadel III EE, Bassoni DL, Kiehne KL, Temesgen B, van Buijtenen JP, Sewell MM, Marshall KA, Neale DB (2001) Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics 159:799–809

    PubMed  CAS  Google Scholar 

  • Brown GR, Bassoni DL, Gill GP, Fontana JR, Wheeler NC, Megraw RA, Davis MF, Sewell MM, Tuskan GA, Neale DB (2003) Identification of quantitative trait loci influencing wood property traits in loblolly pine. III. QTL verification and candidate gene mapping. Genetics 164:1537–1546

    PubMed  CAS  Google Scholar 

  • Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci USA 101:15255–15260

    PubMed  CAS  Google Scholar 

  • Burban C, Petit RJ (2003) Phylogeography of maritime pine inferred with organelle markers having contrasted inheritance. Mol Ecol 12:1487–1495

    PubMed  CAS  Google Scholar 

  • Burdon RD (1997) Genetic diversity for the future: conservation or creation and capture? In: Burdon RD, Moore JM (eds) “IUFRO’ 97 Genetics of Tadiata Pine”, Proc IUFRO Conf 1–4 Dec and workshop 5 Dec, Rotorua, New Zealand. FRI Bull 203:263–274

    Google Scholar 

  • Burdon RD (2001) Genetic diversity and disease resistance: some considerations for research, breeding and deployment. Can J For Res 32:596–606

    Google Scholar 

  • Burdon RD (2002) An introduction to pines. In: Pines of Silvi-cultural Importance. CABI, Wallingford, UK pp x–xxi

    Google Scholar 

  • Burdon RD (2004) Breeding goals: Issues of goal-setting and applications. In: Walter C, Carson M (eds) Plantation Forest Biotechnology for the 21st Century, Research Signpost, Kerala, India, pp 101–118

    Google Scholar 

  • Burdon RD, Bannister MH, Low CB (1992) Genetic Survey of Pinus radiata 4: variance structures and heritabilities in juvenile clones. NZ J For Sci 22:187–210

    Google Scholar 

  • Burdon RD, Firth A, Low CB, Miller MA (1998) Multi-site provenance trials of Pinus radiata in New Zealand. In: Forest Genetic Resources 26:3–8, FAO, Rome

    Google Scholar 

  • Burdon RD, Gea LD (2006) Pursuit of genetic gain and biotic risk management for Pinus radiata in New Zealand. In: Proc 13th Australasian Plant Breed Conf, Christchurch, New Zealand pp 75–85, http://www.apbc.org.nz

    Google Scholar 

  • Burdon RD, Kumar S (2003) Stochastic modelling of the impact of four generations of pollen contamination in unpedigreed gene resources. Silvae Genet 52:1–7

    Google Scholar 

  • Burdon RD, Kumar S (2004) Forwards versus backwards selection: trade-offs between expected genetic gain and risk avoidance. NZ J For Sci 34:3–21

    Google Scholar 

  • Burdon RD, Low CB (1992) Genetic survey of Pinus radiata. 6: Wood properties: variation, heritabilites, and interrelationship with other traits. NZ J For Sci 22:228–245

    Google Scholar 

  • Burdon RD, Miller JT (1992) Introduced forest trees of New Zealand: Recognition, role and seed source. 12. Radiata pine (Pinus radiata D. Don). NZ For Res Inst Bull 124/12 pp 59

    Google Scholar 

  • Byun KO, Kim MZS, Shim SY, Hong SH, Sohn SI (1989) Review of pitch-loblolly hybrid pine (Pinus rigida and P. taeda) breeding researches in Korea and future strategy. Res Rep, For Genet Res Inst, Korea 25:204–211

    Google Scholar 

  • Cahalan CM (1981) Provenance and clonal variation in growth, branching and phenology in Picea sitchensis and Pinus contorta. Silvae Genet 30:40–46

    Google Scholar 

  • Cai Q, Zhang D, Liu ZL, Wang XR (2006) Chromosomal localization of 5S and 18S rDNA in five species of subgenus Strobus and their implications for genome evolution of Pinus. Ann Bot 97:715–722

    PubMed  CAS  Google Scholar 

  • Cánovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Hans-Peter Mock HP, Rossignol M (2004) Plant proteome analysis. Proteomics 4:285–298

    PubMed  Google Scholar 

  • Cantón FR, García-Gutiérrez A, Gallardo F, de Vicente A, Cánovas FM (1993) Molecular characterization of a cDNA clone encoding glutamine synthetase from a gymnosperm: Pinus sylvestris. Plant Mol Biol 22:819–828

    PubMed  Google Scholar 

  • Cantón FR, Le Provost G, Garcia V, Barré A, Frigerio J-M, Paiva J, Fevereiro P, Avila C, Mouret J-F, de Daruvar A, Cánovas FM, Plomion C (2003) Transcriptome analysis of wood formation in maritime pine In: Espinel S, Barredo Y, Ritter E (eds) Sustainable Forestry, Wood Products and Biotechnology. DFA-AFA Press, Vitoria-Gasteiz, Spain, pp 333–347

    Google Scholar 

  • Cato S, McMillan L, Donaldson L, Richardson T, Echt C, Gardner R (2006a) Wood formation from the base to the crown in Pinus Radiata: gradients of tracheid wall thickness, wood density, radial growth rate and gene expression. Plant Mol Biol 60:565–581

    PubMed  CAS  Google Scholar 

  • Cato SA, Pot D, Kumar S, Douglas J, Gardner RC, Wilcox PL (2006b) Balancing selection in a dehydrin gene associated with increased wood density and decreased radial growth in Pinus radiata (Abstr). In: Plant & Animal Genome XIV Conf, San Diego

    Google Scholar 

  • Cato SA, Richardson TE (1996) Inter-and intra-specific polymorphism at chloroplast SSR loci and the inheritance of plastids in Pinus radiata D. Don. Theor Appl Genet 93:587–592

    CAS  Google Scholar 

  • Cervera MT, Plomion C, Malpica CA (2000a) Molecular markers and genome mapping in woody plants. In: Jain SM, Minocha SC (eds) Molecular Biology of Woody Plants. Kluwer, Dordrecht, pp 375–394

    Google Scholar 

  • Cervera MT, Remington D, Frigerio JM, Storme V, Ivens B, Boerjan W, Plomion C (2000b) Improved AFLP analysis of tree species. Can J For Res 30:1608–1616

    CAS  Google Scholar 

  • Chagné D, Brown G, Lalanne C, Madur D, Pot D, Neale DB, Plomion C (2003) Comparative genome and QTL mapping between maritime and loblolly pines. Mol Breed 12:185–195

    Google Scholar 

  • Chagné D, Chaumeil P, Ramboer A, Collada C, Guevara A, Cervera M-T, Vendramin GG, Garcia V, Frigerio JM, Echt C, Richardson T, Plomion C (2004) Cross species transferability and mapping of genomic and cDNA SSRs in pines. Theor Appl Genet 109:1204–12

    PubMed  Google Scholar 

  • Chagné D, Lalanne C, Madur D, Kumar S, Frigerio JM, Krier C, Decroocq S, Savouré A, Bou-Dagher-Kharrat M, Bertocchi E, Brach J, Plomion C (2002) A high density geneticmap of Maritime pine based on AFLPs. Ann For Sci 59:627–636

    Google Scholar 

  • Chambers PGS, Borralho NMG (1999) A simple model to examine the impact of changes in wood traits on the cost of thermomechanical pulping and high-brightness newsprint production with radiata pine. Can J For Res 29:1615–1626

    Google Scholar 

  • Chang S, Puryear JD, Dias MADL, Funkhouser EA, Newton RJ, Cairney J (1996) Gene expression under water deficit in loblolly pine (Pinus taeda): isolation and characterization of cDNA clones. Physiol Planta 97:139–148

    CAS  Google Scholar 

  • Chaumeil P (2006) Plasticité moléculaire de deux écotypes de pin maritime soumis à unstress osmotique. Thèse de Doctorat. Université Henri Poincaré, Nancy I, Nancy

    Google Scholar 

  • Ciavatta VT, Morillon R, Pullman GS, Chrispeels MJ, Cairney J (2001) An aquaglyceroporin is abundantly expressed early in the development of the suspensor and theembryo proper of loblolly pine. Plant Physiol 127:1556–1567

    PubMed  CAS  Google Scholar 

  • Claros MG, Cantón FR, Cánovas FM (2004) Construction of a pine BAC genomic library and bioinformatics platform for automated high-throughput sequence analysis (Abstr). 2nd Annual Meeting of the Spanish Forest Functional Genomics Network. Pontevedra, Spain, 29 Nov 2004. http://www.difo.uah.es/forestgenomics/pontevedra_04/Gonzalo%20CLAROS.pdf

    Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484

    PubMed  CAS  Google Scholar 

  • Conkle MT (1981) Isozyme variation and linkage in six conifer species. In: Proc Isozymes of North American Forest Trees and Insects, USD Forest Service, General Technical Report PSW-48, pp 11–17

    Google Scholar 

  • Costa P (1999) Réponse moléculaire, physiologique et génétique du pin maritime à une contrainte hydrique. PhD thesis. Univ of Nancy

    Google Scholar 

  • Costa P, Plomion C (1999) Genetic analysis of needle protein in Maritime pine. 2. Quantitative variation of protein accumulation. Silvae Genet 48:146–150

    Google Scholar 

  • Costa P, Pot D, Dubos C, Frigerio JM, Pionneau C, Bodenes C, Bertocchi E, Cervera MT, Remington DL, Plomion C (2000) A genetic map of Maritime pine based on AFLP, RAPD and protein markers. Theor Appl Genet 100:39–48

    CAS  Google Scholar 

  • Costa, P, Bahrman, N, Frigerio, J-M, Kremer A, Plomion C (1998) Water-deficit-responsive proteins in maritime pine. Plant Mol Biol 38:587–596

    PubMed  CAS  Google Scholar 

  • Cornelius J (1994) Heritabilities and additive genetic coefficients of variation in forest trees. Can J For Res 24:372–379

    Google Scholar 

  • Danjon F (1995) Observed selection effects on height growth, diameter and stem form in maritime pine. Silvae Genet 44(1):10–19

    Google Scholar 

  • Darvasi A, Soller M (1994) Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics 138:1365–1373

    PubMed  CAS  Google Scholar 

  • Darvasi A, Weinreb A, Minke V, Weller JI, Soller M (1993) Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134:943–951

    PubMed  CAS  Google Scholar 

  • Devey ME, Fiddler TA, Liu BH, Knapp SJ, Neale DB (1994) An RFLP linkage map for loblolly pine based on a three-generation outbred pedigree. Theor Appl Genet 88:273–278

    CAS  Google Scholar 

  • Devey ME, Fino-Mix A, Kinloch BB Jr, Neale DB (1995) Random amplified polymorphic DNA markers tightly linked to a gene for resistance to white pine blister rust in sugar pine. Proc Natl Acad Sci USA 92:2066–2070

    PubMed  CAS  Google Scholar 

  • Devey ME, Bell JC, Smith DN, Neale DB, Moran GF (1996) A genetic linkage map for Pinus radiata based on RFLP, RAPD, and microsatellite markers. Theor Appl Genet 6:673–679

    Google Scholar 

  • Devey ME, Sewell MM, Uren TL, Neale DB (1999) Comparative mapping in loblolly and radiata pine using RFLP and microsatellite markers. Theor Appl Genet 99:656–662

    CAS  Google Scholar 

  • Devey ME, Bell JC, Uren TL, Moran GF (2003) A set of microsatellite markers for fingerprinting and breeding applications in Pinus radiata. Genome 45:984–989

    Google Scholar 

  • Devey ME, Carson SD, Nolan MF, Matheson AC, Te Riini C, Hohepa J (2004a) QTL associations for density and diameter in Pinus radiata and the potential for marker-aided selection. Theor Appl Genet 108:516–524

    PubMed  CAS  Google Scholar 

  • Devey ME, Groom KA, Nolan MF, Bell JC, Dudzinski MJ, Old KM, Matheson AC, Moran GF (2004b) Detection and verification of quantitative trait loci for resistance to Dothistroma needle blight in Pinus radiata. Theor Appl Genet 108:1056–1063

    PubMed  CAS  Google Scholar 

  • Dhakal LP, White TL, Hodge GR (1996) Realized genetic gains from slash pine (Pinus elliottii) tree improvement. Silvae Genet 45:190–197

    Google Scholar 

  • Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461–481

    PubMed  CAS  Google Scholar 

  • Doudrick RL, Heslop-Harrison JS, Nelson CD, Schmidt T, Nance WL, Schwarzacher T (1995) Karyotype of slash pine (Pinus elliottii var elliottii) using patterns of fluorescence in situ hybridization and fluorochrome banding. J Hered 86:289–296

    Google Scholar 

  • Drewry A (1982) G-banded chromosomes in Pinus resinosa. J Hered 73:305–306

    Google Scholar 

  • Du Toit B, Smith C, Carlson C, Esprey L, Allen R, Little K (1998) Eucalypt and pine plantations in South Africa. In: Nambiar EKS, Cossalter C, Triarks A (eds) Workshop Proceedings. CIFOR, 16–20 Feb 1998, South Africa, pp 23–30

    Google Scholar 

  • Dubos C, Plomion C (2003) Identification of water-deficit responsive genes in maritime pine (Pinus pinaster Ait.) roots. Plant Mol Biol 51(2):249–262

    PubMed  CAS  Google Scholar 

  • Dubos C, Provost G, Pot D, Salin F, Lalane C, Madur D, Frigerio JM, Plomion C (2003) Identification and characterization of water-stress-responsive genes in hydroponically grown maritime pine (Pinus pinaster) seedlings. Tree Physiol 23:169–179

    PubMed  CAS  Google Scholar 

  • Dvornyk V, Sirviö A, Mikkonen M, Savolainen O (2002) Low nucleotide diversity at the pal1 locus in the widely distributed Pinus sylvestris. Mol Biol Evol 19:179–188

    PubMed  CAS  Google Scholar 

  • Echt CS, DeVerno LL, Anzidei M, Vendramin GG (1998) Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait. Mol Ecol 7:307–317

    Google Scholar 

  • Echt CS, Burns R (1999) PCR primer pair sequences and SSRs for various P. taeda ESTs. Available on the dendrome Web site at http://dendrome.ucdavis.edu/Gen_res.htm, accessed 20 March 2006

    Google Scholar 

  • Echt CS, Nelson CD (1997) Linkage mapping and genome length in eastern white pine (Pinus strobus L.). Theor Appl Genet 94:1031–1037

    CAS  Google Scholar 

  • Echt CS, Saha S, Deemer D, Nelson CD (2006) Evaluation of pine EST-SSR markers. In: Plant & Animal Genome XIV Conf, San Diego, W-117 (http://www.intlpag.org/14/abstracts/PAG14_W117.html, accessed 20 March 2006)

    Google Scholar 

  • Edwards MD, Page NJ (1994) Evaluation of marker-assisted selection through computer simulation. Theor Appl Genet 88:376–382

    Google Scholar 

  • Edwards MD, Stuber CW, Wendel JF (1987) Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116:113–125

    PubMed  CAS  Google Scholar 

  • Egertsdotter U, van Zyl LM, Mackay J, Peter G, Kirst M, Clark C, Whetten R, Sederoff R (2004) Gene expression during formation of earlywood and latewood in loblolly pine: expression profiles of 350 genes. Plant Biol 6:654–663

    PubMed  CAS  Google Scholar 

  • Elsik CG, Williams CG (2000) Retroelements contribute to the excess low-copy-number DNA in pine. Mol Gen Genet 264:47–55

    PubMed  CAS  Google Scholar 

  • Elsik CG, Williams CG (2001) Low copy microsatellite recovery form a conifergenome. Theor Appl Genet 103:1189–1195

    CAS  Google Scholar 

  • Emebiri LC, Devey ME, Matheson AC, Slee MU (1997) Linkage of RAPD markers to NESTUR, a stem growth index in radiata pine seedlings. Theor Appl Genet 95:119–124

    CAS  Google Scholar 

  • Emebiri LC, Devey ME, Matheson AC, Slee MU (1998) Agerelated changes in the expression of QTLs for growth in radiata pine seedlings. Theor Appl Genet 97:1053–1061

    CAS  Google Scholar 

  • Epperson BK, Allard RW (1989) Spatial autocorrelation analysis of the distribution of genotypes within population of lodgepole pine. Genetics 121:369–377

    PubMed  CAS  Google Scholar 

  • Falkenhagen E (1991) Provenanace variation in Pinus radiate at six sites in South Africa. Silvae Genet 40:41–50

    Google Scholar 

  • Farjon A (1984) Pines. Drawings and description of the genus Pinus. Brill, Leiden

    Google Scholar 

  • Farjon A (2001) World checklist and bibliography of conifers, 2nd edn. The Royal Botanic Gardens, Kew, UK

    Google Scholar 

  • Farjon A, Styles BT (1997) Pinus (Pinaceae). Monograph 75, Flora Neotropica. New York Botanical Gardens, New York

    Google Scholar 

  • Farnir F, Grisart B, Coppieters W, Riquet J, Berzi P, Cambisano N, Karim L, Mni M, Moisio S, Simon P, Wagenaar D, Vilkki J, Georges M (2002) Simultaneous mining of linkage and linkage disequilibrium to fine map quantitative trait loci in outbred half-sib pedigrees: revisiting the location of a quantitative trait locus with major effect on milk production on bovine chromosome 14. Genetics 161:275–287

    PubMed  CAS  Google Scholar 

  • Fernando RL, Grossman M (1989) Marker-assisted selection using best linear unbiased prediction. Genet Sel Evol 21:246–477

    Google Scholar 

  • Fisher PJ, Gardner RC, Richardson TE (1996) Single locus microsatellites isolated using 5’ anchored PCR. Nucleic Acids Res 24:4369–4371

    PubMed  CAS  Google Scholar 

  • Fisher PJ, Gardner RC, Richardson TE (1998) Characteristics of single and multi-copy microsatellities from Pinus radiata. Theor Appl Genet 96:969–979

    CAS  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    PubMed  CAS  Google Scholar 

  • Folkertsma RT, Spassova MI, Prins M, Stevens MR, Hille J, Goldbach RW (1999) Construction of a bacterial artificial chromosome (BAC) library of Lycopersicon esculentum cv. Stevens and its application to physically map the Sw-5 locus. Mol Breed 5:197–207

    CAS  Google Scholar 

  • Friesen N, Brandes A, Heslop-Harrison JS (2001) Diversity, origin, and distribution of retrotransposons (gypsy andcopia) in conifers. Mol Biol Evol 18:1176–1188

    PubMed  CAS  Google Scholar 

  • Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    PubMed  CAS  Google Scholar 

  • García-Gil MR, Mikkonen M, Savolainen O (2003) Nucleotide diversity at two phytochrome loci along a latitudinal cline in Pinus sylvestris. Mol Ecol 12:1195–1206

    PubMed  Google Scholar 

  • García-Gutiérrez A, Cantón FR, Gallardo F, Sánchez-Jiménez F, Cánovas FM (1995) Expression of ferredoxin-dependent glutamate synthase in dark-grown pine seedlings. Plant Mol Biol 27:115–128

    PubMed  Google Scholar 

  • Gaussen H (1960) Les Gymnospermes actuelles et fossils. Fascicule VI. Généralités, genre Pinus; Faculté des Sciences, Toulouse

    Google Scholar 

  • Geada López G, Kamiya K, Harada K (2002) Phylogenetic relationships of Diploxylon pines (subgenus Pinus) based on plastid sequence data. Int J Plant Sci 163:737–747

    Google Scholar 

  • Geldermann H (1975) Investigations on inheritance of quantitative characters in animals by gene markers. I. Methods. Theor Appl Genet 46:319–330

    Google Scholar 

  • Georges M, Nielsen D, Mackinnon M, Mishra A, Okimoto R, Pasquino AT, Sargeant LS, Sorensen A, Steele MR, Zhao X, Womack JE, Hoeschele I (1995) Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics 139:907–920

    PubMed  CAS  Google Scholar 

  • Gerber S, Rodolphe F (1994) An estimation of the genome length of maritime pine (Pinus pinaster Ait). Theor Appl Genet 88:289–292

    Google Scholar 

  • Gerber S, Rodolphe F, Bahrman N, Baradat P (1993) Seed-protein variation in maritime pine (Pinus pinaster Ait.) revealed by two-dimensional electrophoresis: genetic determinism and construction of a linkage map. Theor Appl Genet 85:521–528

    CAS  Google Scholar 

  • Gernandt DS, Geada Lopez G, Ortiz Garcia S, Liston A (2005) Phylogeny and classification of Pinus. Taxon 54:29–42

    Google Scholar 

  • Gernandt DS, Liston A, Pinero D (2003) Phylogenetics of Pinus subsections Cembroides and Nelsoniae inferred from cpDNA sequences. Syst Bot 28:657–673

    Google Scholar 

  • Gion JM, Lalanne C, Le Provost G, Ferry-Dumazet H, Paiva J, Chaumeil P, Frigerio JM, Brach J, Barré A, de Daruvar A, Claverol S, Bonneu M, Sommerer N, Negroni L, Plomion C, Gion J-M, Lalanne C, et al. (2005) The proteome of maritime pine wood forming tissue. Proteomics 5:3731–3751

    PubMed  CAS  Google Scholar 

  • Gómez MA, González-Martínez SC, Collada C, Climent J, Gil L (2003) Complex population genetic structure in the endemic Canary Island pine revealed using chloroplast microsatellite markers. Theor Appl Genet 107:1123–1131

    PubMed  Google Scholar 

  • González-Martínez SC, Gerber S, Cervera MT, Martínez-Zapater J, Gil L, Alía R (2002) Seed gene flow and fine-scale structure in a Mediterranean pine (Pinus pinaster Ait.) using nuclear microsatellite markers. Theor Appl Genet 104:1290–1297

    PubMed  Google Scholar 

  • González-Martínez SC, Robledo-Arnuncio JJ, Collada C, Díaz A, Williams CG, Alía R, Cervera MT (2004) Crossamplification and sequence variation of microsatellite loci in Eurasian hard pines. Theor Appl Genet 109:103–11

    PubMed  Google Scholar 

  • González-Martínez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006a) DNA sequence variation and selection of tag SNPs at candidate genes for drought-stress response in Pinus taeda. Genetics 172:1915–1926

    PubMed  Google Scholar 

  • González-Martínez SC, Krutovsky KV, Neale DB (2006b) Forest-tree population genomics and adaptive evolution. New Phytol 170:227–238

    PubMed  Google Scholar 

  • Govindaraju D, Lewis P, Cullis C (1992) Phylogenetic analysis of pines using ribosomal DNA restriction fragment length polymorphisms. Plant Syst Evol 179:141–153

    Google Scholar 

  • Grace SL, Hamrick JL, Platt WJ (2004) Estimation of seed dispersal in an old-growth population of Longleaf Pine (Pinus palustris) using maternity exclusion analysis. Castanea 69:207–215

    Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Greaves BL (1999) The value of tree improvement: A case study in radiata pine grown for structural sawn timber and linerboard. In: Nepveu G (ed) Connection between silviculture and wood quality through modelling approaches and simulation software. Proc IUFRO Workshop, 5–12 Dec 1999, France, pp 448–459

    Google Scholar 

  • Groover AT, Devey ME, Lee JM, Megraw R, Mitchell-Olds T, Sherman B, Vujcic S, Williams C, Neale DB (1994) Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine. Genetics 138:1293–1300

    PubMed  CAS  Google Scholar 

  • Groover AT, Williams CG, Devey ME, Lee JM, Neale DB (1995) Sex-related differences in meiotic recombination frequency in Pinus taeda. J Hered 86:157–158

    Google Scholar 

  • Grotkopp E, Rejmanek M, Sanderson MJ, Rost TL (2004) Evolution of genome size in pines (Pinus) and its life-history correlates: supertree analyses. Evolution 58:1705–0729

    PubMed  CAS  Google Scholar 

  • Guevara MA, Chagné D, Almeida MH, Byrne M, Collada C, Favre JM, Harvengt L, Jeandroz S, Orazio C, Plomion C, Ramboer A, Rocheta M, Sebastiani F, Soto A, Vendramin GG, Cervera MT (2005a) Isolation and characterization of nuclear microsatellite loci in P. pinaster. Mol Ecol Notes 5:57–59

    CAS  Google Scholar 

  • Guevara MA, Soto A, Collada C, Plomion C, Savolainen O, Neale DB, González-Martínez SC, Cerevera MT (2005b) Genomics applied to the study of adaptation in pine species. Invest Agrar Syst Recur For 14:292–306

    Google Scholar 

  • Gugerli F, Senn J, Anzidei M, Madaghiele A, Buchler U, Sperisen C, Vendramin GG (2001) Chloroplast microsatellites and mitochondrial nad1 intron 2 sequences indicate congruent phylogenetic relationships of Swiss stone pine (Pinus cembra), Siberian stone pine (P. sibirica) and Siberian dwarf pine (P. pumila). Mol Ecol 10:1489–1497

    PubMed  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Mol Biol 57:461–485

    PubMed  CAS  Google Scholar 

  • Gwaze DP, Harding KJ, Purnell RC, Bridgwater FE (2002) Optimum selection age for wood density in loblolly Pine. Can J For Res 32:1393–1399

    Google Scholar 

  • Gwaze DP, Zhou Y, Reyes-Valdés MH, Al-Rababah MA, Williams CG (2003) Haplotypic QTL mapping in an outbred pedigree. Genet Res 81:43–50

    PubMed  CAS  Google Scholar 

  • Hamrick JL, Godt JW (1990) Allozyme diversity in plant species. In: Brown A, Clegg MT, Kahler AL, Weir BS (eds) Plant Population Genetics, Breeding and Genetic Resources. Sinauer, Sunderland, MA, pp 43–63

    Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Phil Trans R Soc Lond B Biol Sci 351:1291–1298

    Google Scholar 

  • Hannrup B, Ekberg I (1998) Age-age correlations for tracheid length and wood density in Pinus sylvestris. Can J For Res 28:1373–1379

    Google Scholar 

  • Hannrup B, Ekberg I, Persson A (2000) Genetic correlations among wood, growth capacity and stem traits in Pinus sylvestris. Can J For Res 15:161–170

    Google Scholar 

  • Harkins DM, Johnson GN, Skaggs PA, Mix AD, Dupper GE, Devey ME, Kinloch Jr BB, Neale DB (1998) Saturation mapping of a major gene for resistance to white pine blister rust in sugar pine. Theor Appl Genet 97:1355–1360

    CAS  Google Scholar 

  • Harry DE, Temesgen B, Neale DB (1998) Codominant PCR-based markers for Pinus taeda developed from mapped cDNA clones. Theor Appl Genet 97:327–336

    CAS  Google Scholar 

  • Hartmann HT, Kester DE, Davies FT Jr (1990) Plant Propagation Principles and Practices, 5th edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Hayashi E, Kondo T, Terada K, Kuramoto N, Goto Y, Okamura M, Kawasaki H (2001) Linkage map of Japanese black pine based on AFLP and RAPD markers including markers linked to resistance against the pine needle gall midge. Theor Appl Genet 102:871–875

    CAS  Google Scholar 

  • Hayashi E, Kondo T, Terada K, Kuramoto N, Kawasaki S (2004) Identification of AFLP markers linked to a resistance gene against pine needle gall midge in Japanese balck pine. Theor Appl Genet 108:1177–1181

    PubMed  CAS  Google Scholar 

  • Heath LS, Ramakrishnan N, Sederoff RR, Whetten RW, Chevone BI, Struble CA, Jouenne VY, Chen D, van Zyl LM, Grene R (2002) Studying the functional genomics of stress responses in loblolly pine with the “Expresso microarray experiment management system”. Comp Funct Genom 3:226–243

    CAS  Google Scholar 

  • Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108

    PubMed  CAS  Google Scholar 

  • Hizume M, Arai M, Tanaka A (1990) Chromosome banding in the genus Pinus. III. Fluorescent banding pattern of P. luchuensis and its relationships among the Japanese diploxylon pines. Bot Mag Tokyo 103:103–111

    Google Scholar 

  • Hizume M, Ohgiku A, Tanaka A (1989) Chromosome banding in the genus Pinus. II. Interspecific variation of fluorescent banding patterns in P. densiflora and P. thunbergii. Bot Mag Tokyo 102:25–36

    Google Scholar 

  • Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002) Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor Appl Genet 105:491–497

    PubMed  Google Scholar 

  • Hodge GR, Dvorak WS (1999) Genetic parameters and provenance variation of Pinus tecunumanii in 78 international trials. For Genet 6:157–180

    Google Scholar 

  • Hodge GR, Volker PW, Potts BM, Owen JV (1996) A comparison of genetic information from open-pollinated and control-pollinated progeny tests in two Eucalypt species. Theor Appl Genet 92:53–63

    Google Scholar 

  • Hospital F, Goldringer I, Openshaw S (2000) Efficient marker-based recurrent selection for multiple quantitative trait loci. Genet Res 75:357–368

    PubMed  CAS  Google Scholar 

  • Hospital F, Moreau L, Lacoudre F, Charcosset A, Gallais A (1997) More on the efficiency of marker-assisted selection. Theor Appl Genet 95:1181–1189

    Google Scholar 

  • Hurme P, Sillanpää M, Repo T, Arjas E, Savolainen O (2000) Genetic basis of climatic adaptation in Scots pine by Bayesian QTL analysis. Genetics 156:1309–1322

    PubMed  CAS  Google Scholar 

  • Hyun SK (1976) Inter-specific hybridization in pines with the special reference to Pinus rigida and P. taeda. Silvae Genet 25:188–191

    Google Scholar 

  • Ingvarsson PK (2005) Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European Aspen (Populus tremula L., Salicaceae). Genetics 169:945–953

    PubMed  CAS  Google Scholar 

  • Isik F, Li B, Frampton J, Goldfarb B (2004) Efficiency of seedlings and rooted cuttings for testing and selection in Pinus taeda. For Sci 50:44–53

    Google Scholar 

  • Islam-Faridi MN, Chang Y-L, Zhang HB, Kinlaw C, Doudrick RL, Neale DB, Echt CS, Price HJ, Stelly DM (1998) Construction of a pine BAC library. In: Plant & Animal Genome VI Conf, San Diego

    Google Scholar 

  • Islam-Faridi MN, Mujeeb-Kazi A (1995) Visualization of Secale cereale DNA in wheat germplasm by FISH. Theor Appl Genet 90:595–600

    Google Scholar 

  • Islam-Faridi MN, Nelson CD, Kubisiak TL (2007) Reference karyotype and cytomolecular map for loblolly pine (Pinus taeda L.). Genome (in press)

    Google Scholar 

  • Islam-Faridi MN, Nelson CD, Kubisiak TL, Gullirmo MV, Mc-Namara VH, Price HJ, Stelly DM (2003) Loblolly pine karyotype using FISH and DAPI positive banding. In: Proc 27th Southern For Tree Improv Conf, 25–27 June 2003, Stillwater, OK, pp 184–188

    Google Scholar 

  • Ivkovic M, Kumar S, Wu H (2006) Adding value to the end-products of radiatapine: A review of breeding for structural timber production. In: Proc 13th Australasian Plant Breed Conf, 18–22 April 2006, Christchurch, NZ, pp 273–278

    Google Scholar 

  • Jackson RB, Schlesinger WH (2004) Curbing the U.S. carbon deficit. Proc Natl Acad Sci USA 101:15827–15829

    PubMed  CAS  Google Scholar 

  • Jacobs MD, Gardner RC, Murray BG (2000) Cytological characterization of heterochromatin and rDNA in Pinus radiate and P. taeda. Plant Syst Evo1 223:71–79

    CAS  Google Scholar 

  • Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    PubMed  CAS  Google Scholar 

  • Jewell DC, Islam-Faridi MN (1994) Details of a technique for somatic chromosome preparation and C-banding of maize. In: Freeling M, Walbot V (eds) The Maize Hand Book. Springer, Berlin Heidelberg New York, pp 484–493

    Google Scholar 

  • Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127

    PubMed  CAS  Google Scholar 

  • Jiang JM, Liu ZX, Lu BS, Jiang JM, Liu ZX, Lu BS (1999) Provenance genetic variation analysis of loblolly pine and determination of suitable provenances (areas). For Res Beijing 12:485–492

    Google Scholar 

  • Johnson GR, Wheeler NC, Strauss SH (2000) Financial feasibility of marker-aided selection in Douglas-fir. Can J For Res 30:1942–1952

    Google Scholar 

  • Kamm A, Doudrick RL, Heslop-Harrison JS, Schmidt T (1996) The genomic and physical organization of Ty1-copia-like sequences as a component of large genomes in Pinus elliottii var. elliottii and other gymnosperms. Proc Natl Acad Sci USA 93:2708–2713

    PubMed  CAS  Google Scholar 

  • Kao C-H, Zeng J, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    PubMed  CAS  Google Scholar 

  • Karhu A, Hurme P, Karjalainen M, Karvonen P, Kärkäinen K, Neal DB, Savolainen O (1996) Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor Appl Genet 93:215–221

    CAS  Google Scholar 

  • Kärkäinen K, Savolainen O (1993) The degree of early inbreeding depression determines the selfing rate at the seed stage: model and results from Pinus sylvestris (Scots pine). Heredity 71:160–166

    Google Scholar 

  • Kaya Z, Neale DB (1995) Utility of random amplified polymorphic DNA (RAPD)markers for linkage mapping in Turkish red pine (Pinus brutia Ten). Silvae Genet 44:110–116

    Google Scholar 

  • Kaya Z, Sewell MM, Neale DB (1999) Identification of quantitative trait loci influencing annual height-and diameter-increment growth in loblolly pine (Pinus taeda L.). Theor Appl Genet 98:586–592

    CAS  Google Scholar 

  • Kayihan GC, Huber DA, Morse AM, White TL, Davis JM (2005) Genetic dissection of fusiform rust and pitch canker disease traits in loblolly pine. Theor Appl Genet 110:948–958

    PubMed  Google Scholar 

  • Kent J, Richardson TE (1997) Fluorescently labelled, multiplexed chloroplast microsatellites for high-throughput paternity analysis in Pinus radiata. NZ J For Sci 27:305–312

    CAS  Google Scholar 

  • Khoshoo TN (1961) Chromosome numbers in gymnosperms. Silvae Genet 10:1–9

    Google Scholar 

  • Kinlaw CS, Neale DB (1997) Complex gene families in pine genomes. Trends Plant Sci 2:356–359

    Google Scholar 

  • Kinloch BB, Parks GK, Flower CW (1970) White pine blister rust: Simply inherited resistance in sugar pine. Science 167:193–195

    Google Scholar 

  • Kirst M, Johnson AF, Baucom C, Ulrich E, Hubbard K, Staggs R, Paule C, Retzel E, Whetten R, Sederoff R (2003) Apparent homology of expressed genes from wood forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana. Proc Natl Acad Sci USA 100:7383–7388

    PubMed  Google Scholar 

  • Kirst M, Myburg AA, De Leon JP, Kirst ME, Scott J, Sederoff R (2004) Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of Eucalyptus. Plant Physiol 135:2368–2378

    PubMed  CAS  Google Scholar 

  • Kirst M, Cordeiro CM, Rezende GDSP, Grattapaglia D (2005) Power of microsatellite markers for fingerprinting and parentage analysis in Eucalyptus grandis breeding populations. J Hered 96:161–166

    PubMed  CAS  Google Scholar 

  • Knott S, Neale DN, Sewell MM, Haley C (1997) Multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine. Theor Appl Genet 94:810–820

    Google Scholar 

  • Komulainen P, Brown GR, Mikkonen M, Karhu A, Garcia-Gil MR, O’Malley DM, Lee B, Neale DB, Savolainen O (2003) Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda. Theor Appl Genet 107:667–678

    PubMed  CAS  Google Scholar 

  • Kondo T, Terada K, Hayashi E, Kuramoto N, Okamura M, Kawasaki H (2000) RAPD markers linked to a gene for resistance to pine needle gall midge in Japanese black pine (Pinus thunbergii). Theor Appl Genet 100:391–395

    CAS  Google Scholar 

  • Korol AB, Ronin YI, Kirzhner VM (1995) Interval mapping of quantitative trait loci employing correlated traits complexes. Genetics 140:1137–1147

    PubMed  CAS  Google Scholar 

  • Korol AB, Ronin YI, Nevo E, Hayes PM (1998) Multi-interval mapping of correlated trait complexes. Heredity 80:273–284

    Google Scholar 

  • Kossack DS, Kinlaw CS (1999) IFG, a gypsy-like retrotransposon in Pinus (Pinaceae), has an extensive history in pines. Plant Mol Biol 39:417–426

    PubMed  CAS  Google Scholar 

  • Kremer A (1992) Predictions of age-age correlations of total height based on serial correlations between height increments in Maritime pine (Pinus pinaster Ait.). Theor Appl Genet 85:152–158

    Google Scholar 

  • Kriebel HB (1985) DNA sequence components of the Pinus strobus nuclear genome. Can J For Res 15:1–4

    CAS  Google Scholar 

  • Kruglyak L (1999) Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 22:139–144

    PubMed  CAS  Google Scholar 

  • Krupkin AB, Liston A, Strauss SH (1996) Phylogenetic analysis of the hard pines (Pinus subgenus Pinus, Pinaceae) from chloroplast DNA restriction site analysis. Am J Bot 83:489–498

    Google Scholar 

  • Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold hardiness and wood quality related candidate genes in Douglas-fir. Genetics 171:2029–2041

    PubMed  CAS  Google Scholar 

  • Krutovsky KV, Troggio M, Brown GR, Jermstad KD, Neale DB (2004) Comparative mapping in the Pinaceae. Genetics 168:447–461

    PubMed  CAS  Google Scholar 

  • Kuang H, Richardson TE, Carson SD, Bongarten B (1999b) Genetic analysis of inbreeding depression in plus tree 850.55 of Pinus radiata D. Don. II. Genetics of viability genes. Theor Appl Genet 99:140–146

    Google Scholar 

  • Kuang H, Richardson TE, Carson SD, Wilcox PL, Bongarten B (1999a) Genetic analysis of inbreeding depress sion in plus tree 850.055 of Pinus radiata D. Don. 1. Genetic map with distorted markers. Theor Appl Genet 98:697–703

    CAS  Google Scholar 

  • Kubisiak TL, Nelson CD, Nance WL, Stine M (1995) RAPD linkage mapping in a longleaf pine × slash pine F1 family. Theor Appl Genet 90:1119–1127

    CAS  Google Scholar 

  • Kubisiak TL, Nelson CD, Nance WL, Stine M (1996) Comparison of RAPD linkage maps constructed for a single longleaf pine from both haploid and diploid mapping populations. For Genet 3:230–211

    Google Scholar 

  • Kubisiak TL, Nelson CD, Nowak J, Friend AL (2000) Genetic linkage mapping of genomic regions conferring tolerance to high aluminum in slash pine. J Sust For 10:69–78

    Google Scholar 

  • Kubisiak TL, Nelson, CD, Stine M (1997) RAPD mapping of genomic regions influencing early height growth in longleaf pine × slash pine F1 hybrids. In: Proc 24th Southern For Tree Improv Conf, Orlando, FL, 9–12 June 1997, pp 198–206

    Google Scholar 

  • Kumar S (2004) Genetic parameter estimates for wood stiffness, strength, internal checking and resin bleeding for radiate pine. Can J For Res 34:2601–2610

    Google Scholar 

  • Kumar S, Garrick DJ (2001) Genetic response to within-family selection using molecular markers in some radiata pine breeding schemes. Can J For Res 31:779–785

    Google Scholar 

  • Kumar S, Richardson TE (2005) Inferring heritability and relatedness using molecular markers in radiata pine. Mol Breed 15:55–64

    CAS  Google Scholar 

  • Kumar S, Spelman R, Garrick D, Richardson TE, Wilcox PL (2000) Multiple marker mapping of quantitative trait loci on chromosome three in an outbred pedigree of radiate pine. Theor Appl Genet 100:926–933

    Google Scholar 

  • Kumar S, Echt C, Wilcox PL, Richardson TE (2004) Testing for linkage disequilibrium in the New Zealand radiata pine breeding population. Theor Appl Genet 108:292–298

    PubMed  CAS  Google Scholar 

  • Kumar S, Gerber S, Richardson TE (2006) Pedigree reconstruction using SSR markers in a radiata pine breeding programme. In: Proc 13th Australasian Plant Breed Conf, 17–21 April, Christchurch, New Zealand pp 578–583, http://www.apbc.org.nz

    Google Scholar 

  • Kutil BL, Williams CG (2001) Triplet-repeat microsatellites shared among hard and soft pines. J Hered 92:327–32

    PubMed  CAS  Google Scholar 

  • Lambeth C (2000) Realized genetic gains for first generation improved loblolly pine in 45 tests in coastal North Carolina. J Appl For 24:140–144

    Google Scholar 

  • Lambeth C, Lee BC, O’Malley D, Wheeler N (2001) Polymix breeding with parental analysis of progeny: an alternative to full-sib breeding and testing. Theor Appl Genet 103:930–943

    Google Scholar 

  • Lamoureux D, Peterson DG, Li W, Fellers JP, Gill BS (2005) The efficacy of Cot-based gene enrichment in wheat (Triticum aestivum L.). Genome 48:1120–1126

    PubMed  CAS  Google Scholar 

  • Lamprecht H (1990) Silviculture in the Tropics: tropical forest ecosystems and their tree species-possibilities and methods for their long-term utilization. GTZ, Eschborn, Germany

    Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Laurie CC, Chasalow SD, LeDeaux JR, McCarroll R, Bush D, Hauge B, Lai C, Clark D, Rocheford TR, Dudley JW (2004) The genetic architecture of response to long-term artificial selection for oil concentration in themaize kernel. Genetics 168:2141–2155

    PubMed  Google Scholar 

  • Le Dantec L, Chagné D, Pot D, Cantin O, Garnier-Géré P, Bedon F, Frigerio JM, Chaumeil P, Léger P, García V, Laigret F, de Daruvar A, Plomion C (2004) Automated SNP detection in expressed sequence tags: statistical considerations and application to maritime pine sequences. Plant Mol Biol 54:461–470

    PubMed  Google Scholar 

  • Le Provost G, Paiva J, Pot D, Brach J, Plomion C (2003) Seasonal variation in transcript accumulation in wood forming tissues of maritime pine (Pinus pinaster Ait.) with emphasis on a cell wall Glycine Rich Protein. Planta 217:820–830

    PubMed  Google Scholar 

  • Ledig FT (1998) Genetic variation in Pinus. In: Richardson DM (ed) Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge, UK, pp 251–280

    Google Scholar 

  • Ledig FT, Conkle MT (1983) Gene diversity and genetic structure in a narrow endemic Torrey pine (Pinus torreyana Parry ex Carr). Evolution 37:79–85

    CAS  Google Scholar 

  • Leitch IJ, Hanson L, Winfield M, Parker J, Bennett MD (2001) Nuclear DNA C-values complete familial representation in gymnosperms. Ann Bot 88:843–849

    CAS  Google Scholar 

  • Lerceteau EC, Plomion C, Andersson B (2000) AFLP mapping and detection of quantitative trait loci (QTLs) for economically important traits in Pinus sylvestris: a preliminary study. Mol Breed 6:451–458

    CAS  Google Scholar 

  • Li C, Yeh FC (2001) Construction of a framework map in Pinus contorta subsp. latifolia using random amplified polymorphic DNA markers. Genome 44:147–153

    PubMed  CAS  Google Scholar 

  • Liston A, Robinson WA, Pinero D, Alvarez-Buylla ER (1999) Phylogenetics of Pinus (Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Mol Phylogenet Evol 11:95–109

    PubMed  CAS  Google Scholar 

  • Liu ZL, Zhang D, Hong DY, Wang XR (2003) Chromosomal localization of 5S and 18S-5.8S-25S ribosomal DNA sites in five Asian pines using fluorescence in situ hybridization. Theor Appl Genet 106:198–204

    PubMed  CAS  Google Scholar 

  • Lopez-Upton J, White TL, Huber DA (2000) Species differences in early growth and rust incidence of loblolly and slash pine. For Ecol Mng 132:211–222

    Google Scholar 

  • Lorenz WW, Dean JFD (2002) SAGE profiling and demonstration of differential gene expression along the axial developmental gradient of lignifying xylem in loblolly pine (Pinus taeda). Tree Physiol 22:301–310

    PubMed  CAS  Google Scholar 

  • Lorenz WW, Sun F, Liang C, Kolychev D, Wang H, Zhao X, Cordonnier-Pratt MM, Pratt LH, Dean JFD (2005) Water stress-responsive genes in loblolly pine (Pinus taeda) roots identified by analyses of expressed sequence tag libraries. Tree Physiol 26:1–16

    Google Scholar 

  • Lorenz WW, Sun F, Liang C, Kolychev D, Wang H, Zhao X, Cordonnier-Pratt MM, Pratt LH, Dean JF (2006) Water stress-responsive genes in loblolly pine (Pinus taeda) roots identified by analyses of expressed sequence tag libraries. Tree Physiol 26:1–16

    PubMed  Google Scholar 

  • Lowe WJ, Byram TD, Bridgwater FE (1999) Selecting loblolly pine parents for seed orchards to minimise the costs of producing pulp. For Sci 45:213–216

    Google Scholar 

  • Lubaretz O, Fuchs J, Ahne R, Meister A, Schubert I (1996) Karyotyping of three Pinaceae species via fluorescent in situ hybridization and computer-aided chromosome analysis. Theor Appl Genet 92:411–416

    Google Scholar 

  • Luikart G, England P, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994

    PubMed  CAS  Google Scholar 

  • Lund MS, Sorensen P, Guldbrantsen B, Sorensen DA (2003) Multitrait fine mapping of quantitative trait loci using combined linkage disequilibrium and linkage analysis. Genetics 163:405–410

    PubMed  CAS  Google Scholar 

  • Ma XF, Szmidt A, Wang WR (2006) Genetic structure and evolutionary history of a diploid hybrid pine Pinus densata inferred from the nucleotide variation at seven gene loci. Mol Biol Evol 23:807–816

    PubMed  CAS  Google Scholar 

  • MacPherson P, Filion WG (1981) Karyotype analysis and the distribution of constitutive heterochromatin in five species of Pinus. J Hered 72:193–198

    Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Mariette S, Chagné D, Decroocq S, Vendramin GG, Lalanne C, Madur D, Plomion C (2001) Microsatellite markers for Pinus pinaster Ait. Ann For Sci 58:203–206

    Google Scholar 

  • Markussen T, Fladung M, Achere V, Favre JM, Faivre-Rampant P, Aragones A, Da Silva Perez, Havengt L, Ritter E (2003) Identification of QTLs controlling growth, chemical and physical wood property traits inPinus pinaster (Ait.). Silvae Genet 52:8–15

    Google Scholar 

  • Marquardt PE, Epperson BK (2004) Spatial and population genetic structure of microsatellites in white pine. Mol Ecol 13:3305–3315

    PubMed  CAS  Google Scholar 

  • Matheson AC, Lindgren D (1985) Gain from the clonal and the clonal seed orchard options compared for tree breeding programs. Theor Appl Genet 71:242–249

    Google Scholar 

  • Matziris DI (1995) Provenance variation of Pinus radiata grown in Greece. Silvae Genet 44:88–96

    Google Scholar 

  • McKeand S, Mullin T, Byram T, White TL (2003) Deployment of genetically improved loblolly and slash pines in the South USA. J For 101:32–37

    Google Scholar 

  • Mergen F (1958) Natural polyploidy in slash pine. For Sci 4:283–295

    Google Scholar 

  • Miksche JP, Hotta Y (19931973) DNA base composition and repetitious DNA in several conifers. Chromosoma 41:29–36

    Google Scholar 

  • Millar CI (1998) Early evolution of pines. In: Richardson DM (ed) Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge, UK, pp 69–91

    Google Scholar 

  • Mitton JB (1992) The dynamic mating system of conifers. New For 6:187–216

    Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Grasses, line up and form a circle. Curr Biol 5(7):737–739

    PubMed  CAS  Google Scholar 

  • Moran GF, Bell JC, Hilliker AJ (1983) Greater meiotic recombination in male vs. female gametes in Pinus radiata. J Hered 74:62

    Google Scholar 

  • Morgante M, Salamini F (2003) From plant genomics to breeding practice. Curr Opin Biotechnol 14:214–219

    PubMed  CAS  Google Scholar 

  • Morgante M, Vendramin GG, Rossi P, Olivieri AM (1993) Selection against in breds in early life-cycle phases in Pinus leucodermis. Heredity 70:622–627

    Google Scholar 

  • Morin PA, Luikart G, Wayne RK, and the SNP workshop group (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–2169

    Google Scholar 

  • Morse AM, Nelson CD, Covert SF, Holliday AG, Smith KE, Davis JM (2004) Pine genes regulated by the necrotrophic pathogen Fusarium circinatum. Theor Appl Genet 109:922–932

    PubMed  CAS  Google Scholar 

  • Morse AM, Nelson CD, Covert SF, Smith KE, Davis JM (2004) Pine genes regulated by the necrotrophic pathogen, Fusarium circinatum. Theoretical and Applied Genetics 109:922–932

    PubMed  CAS  Google Scholar 

  • Morton NE (1991) Parameters of the human genome. Proc Natl Acad Sci USA 88:7474–7476

    PubMed  CAS  Google Scholar 

  • Mosig MO, Lipkin E, Khutoreskaya G, Tchourzyna E, Soller M, Friedmann A (2001) A whole genome scan for quantitative trait loci affecting milk protein percentage in Israeli-Holstein cattle, by means of selective milk DNA pooling in a Daughter design, using an adjusted false discovery rate criterion. Genetics 157:1683–1698

    PubMed  CAS  Google Scholar 

  • Moura VPG, Dvorak WS, Hodge GR (1998) Provenance and family variation of Pinus oocarpa grown in the Brazilian cerrado. For Ecol Manage 109:315–322

    Google Scholar 

  • Müller-Starck G (1998) Isozymes. In: Karp A, Isaac PG, Ingram DS (eds) Molecular Tools for Screening Biodiversity: Plants and Animals. Chapman and Hall, London, UK, pp 75–81

    Google Scholar 

  • Muona O, Harju A (1989) Effective population sizes, genetic variability and mating system in natural stands and seed orchards of Pinus sylvestris. Silvae Genet 38:221–228

    Google Scholar 

  • Muona O, Yazdani R, Rudin R (1987) Genetic change between life stages in Pinus sylvestris: allozymes variation in seeds and planted seedlings. Silvae Genet 35:39–42

    Google Scholar 

  • Murray B (1998) Nuclear DNA amounts in gymnosperms. Ann Bot 82(Suppl A):3–15

    CAS  Google Scholar 

  • Myburg H, Morse AM, Amerson HV, Kubisiak TL, Huber DA, Osborne JA, Garcia SA, Nelson CD, Davis JM, Covert SF, van Zyl LM (2006) Differential gene expression in loblolly pine (Pinus taeda L.) challenged with the fusiform rust fungus, Cronartium quercuum f. sp. fusiforme. Physiological and Molecular Plant Pathology 69:79–101

    Google Scholar 

  • Myers RM, Maniatis T, Lerman LS (1987) Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol 155:501–527

    PubMed  CAS  Google Scholar 

  • Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330

    PubMed  CAS  Google Scholar 

  • Neale DB, Sederoff RR (1989) Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine. Theor Appl Genet 77:212–216

    Google Scholar 

  • Neale DB, Williams CG (1991) Restriction fragment length polymorphism mapping in conifers and applications to forest genetics and tree improvement. Can J For Res 21:545–554

    CAS  Google Scholar 

  • Nelson CD, Echt CS (2003) New models for marker-assisted selection in tree breeding. In: McKinley C (ed) Proc 27th South For Tree Improv Conf, Stillwater, OK, p 114

    Google Scholar 

  • Nelson CD, Echt CS (2004) Marker-directed population improvement. In: Li B, McKeand S (eds) Proc IUFRO Joint Conf of Div 2, For Genet Tree Breed in the Age of Genomics: Progress and Future, Charleston, SC, p 255

    Google Scholar 

  • Nelson CD, Kubisiak TL, Johnson G, Burdine C, Bridgwater FE (2003) Microsatellite analysis of loblolly pine. In: Plant & Animal Genome XI Conf, San Diego, p 560 (http://www.intl-pag.org/11/abstracts/P5i_P560_XI.html, accessed 20 March 2006)

    Google Scholar 

  • Nelson CD, Kubisiak, TL, Stine M, Nance WL (1994) A genetic linkage map of longleaf pine (Pinus palustris Mill.) basedon random amplified polymorphic DNAs. J Hered 85:433–439

    CAS  Google Scholar 

  • Nelson CD, Nance WL, Doudrick RL (1993) A partial genetic linkage map of slash pine (Pinus elliottii Engelm. var. elliottii) based on random amplified polymorphic DNAs. Theor Appl Genet 8:145–151

    Google Scholar 

  • Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    CAS  Google Scholar 

  • Nikles DG (2000) Experience with some Pinus hybrids in Queensland, Australia. In: Dungey HS, Dieters MJ, Nikles DG (Compl) Hybrid Breeding and Genetics of Forest Trees. Proc of QFRI/CRC-SPF Symp, 9–14 April 2000, Noosa, Queensland, Australia. Dept of Pri Indus, Brisbane, pp 14–26

    Google Scholar 

  • No E, Zhou Y, Loopstra CA (2000) Sequences upstream and downstream of two xylem-specific pine genes influence their expression. Plant Sci 160:77–86

    PubMed  CAS  Google Scholar 

  • NSF (2005) NSF, USDA and DOE Award $32 Million to Sequence Corn Genome. Press Release 05-197. National Science Foundation. 11-15-2005. http://www.nsf.gov/news/news_summ.jsp?cntn_id=104608

    Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins J Biol Chem 250:4007–4021

    PubMed  CAS  Google Scholar 

  • O’Malley D, Grattaplagia D. Chaparro JX, Wilcox PL, Amerson HV, Liu B-H, Whetton R, McKeand S, Kuhlman EG, McCord S, Crane B, Sederoff RR (1996) Molecular markers, forest genetics and tree breeding. In: Gustafson JP, Flavell RB (eds) Genomes of Plants and Animals: 21st Stadler Genet Symp. Plenum, New York

    Google Scholar 

  • Ohri D, Khoshoo TN (1986) Genome size in gymnosperms. Plant Syst Evol 153:119–131

    Google Scholar 

  • Olsson T, Lindgren D, Li B (2001) Balancing genetic gain and relatedness in seed orchards. Silvae Genet 50:222–227

    Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2770

    PubMed  CAS  Google Scholar 

  • Ott J (1991) Analysis of Human Genetic Linkage. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Pacheco D, Díaz S, Osuna D, Bautista R, Claros MG, Cánovas FM, Cantón FR (2005) Identification of candidate genes conferring specific properties to distinct types of Pinus pinaster Ait. wood. IUFRO Tree Biotechnol, Pretoria, South Africa

    Google Scholar 

  • Paiva J (2006) Phenotypic and molecular plasticity of wood forming tissues in maritime pine (Pinus pinaster Ait.). PhD thesis of Universidad Nova de Lisboa and Bordeaux 1

    Google Scholar 

  • Paran I, Zamir D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19:303–306

    PubMed  CAS  Google Scholar 

  • Park YS (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann For Sci 59:651–656

    Google Scholar 

  • Paterson AH, Freeling M, Sasaki T (2005) Grains of knowledge: genomics of model cereals. Genome Res 15:1643–1650

    PubMed  CAS  Google Scholar 

  • Paul AD, Foster GS, Caldwell T, McRae J (1997) Parameters for height, diameter, and volume in a multilocation clonal study with loblolly pine. For Sci 43:87–98

    Google Scholar 

  • Pavy N, Laroche J, Bousquet J, MacKay J (2005) Large-scale analysis of secondary xylem ESTs in pine. Plant Mol Biol 57:203224

    Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as a feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Report No DOE/GO-102005-2135. US Dept of Energy/US Dept of Agri. http://www1.eere.energy.gov/biomass/pdfs/final_billionton_vision_report2.pdf

    Google Scholar 

  • Peterson DG (2005) Reduced representation strategies and their application to plant genomes. In: Meksem K, Kahl G (eds) The Handbook of Genome Mapping: Genetic and Physical Mapping. Wiley, Weinheim, pp 307–335

    Google Scholar 

  • Peterson DG, Chouvarine P, Thummasuwan S, Saha S, Mukherjee D, Carlson JE (2006) Exploring the pine genome using Cot filtration and 454 Life Sciences massively parallel shotgun sequencing. In: Plant & Animal Genomes XIV Conf, San Diego. http://www.intl-pag.org/pag/14/abstracts/PAG14_W376.html

    Google Scholar 

  • Peterson DG, Nelson CD, Islam-Faridi MN, Main DS, Tomkins JP (2005) Accelerating pine genomics through development and utilization of molecular and cytogenetic resources. In: Plant & Animal Genomes XIII Conf, San Diego. http://www.intl-pag.org/pag/13/abstracts/PAG13_P515.html

    Google Scholar 

  • Peterson DG, Schulze SR, Sciara EB, Lee SA, Bowers JE, Nagel A, Jiang N, Tibbitts DC, Wessler SR, Paterson AH (2002) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12:795–807

    PubMed  CAS  Google Scholar 

  • Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organisation of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701

    PubMed  CAS  Google Scholar 

  • Petit RJ, Vendramin GG (2007) Phylogeography of organelle DNA in plants: an introduction. In: Weiss S, Ferrand N (eds) Phylogeography of Southern European Refugia. Kluwer, Amsterdam, (in press)

    Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    CAS  Google Scholar 

  • Plomion C, Durel C-E (1996) Estimation of the average effects of specific alleles detected by the pseudo-testcross QTL mapping strategy. Gen Sel Evol 28:223–235

    Google Scholar 

  • Plomion C, O’Malley DM (1996) Recombination rate differences for pollen parents and seed parents in pine. Heredity 77:341–350

    CAS  Google Scholar 

  • Plomion C, Bahrman N, Durel CE, O’Malley DM (1995a) Genomic analysis in Pinus pinaster (Maritime pine) using RAPD and protein markers. Heredity 74:661–668

    CAS  Google Scholar 

  • Plomion C, O’Malley DM, Durel CE (1995b) Genomic analysis in Maritime pine (Pinus pinaster). Comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual. Theor Appl Genet 90:1028–1034

    CAS  Google Scholar 

  • Plomion C, Durel C-E, O’Malley D (1996a) Genetic dissection of height in maritime pine seedlings raised under accelerated growth condition. Theor Appl Genet 93:849–858

    CAS  Google Scholar 

  • Plomion C, Yani A, Marpeau A (1996b) Genetic determinism of ?3-carene in maritime pine using random amplified polymorphic DNA (RAPD) markers. Genome 39:1123–1127

    CAS  Google Scholar 

  • Plomion C, Liu BH, O’Malley DM (1996c) Genetic analysis using trans dominant linked markers in an F2family. Theor Appl Genet 93:1083–1089

    CAS  Google Scholar 

  • Plomion C, Costa P, Bahrman N, Frigerio JM (1997) Genetic Analysis of needle proteins in maritime pine. 1. Mapping dominant and codominant protein markers assayed on diploid tissue, in a haploid-based geneticmap. Silvae Genet 46:161–165

    Google Scholar 

  • Plomion C, Hurme P, Frigerio J-M, Ridolphi M, Pot D, Pionneau C, Avila C, Gallardo F, David H, Neutlings G, Campbell M, Canovas FM, Savolainen O, Bodénès C, Kremer A (1999) Developing SSCP markers in two Pinus species. Mol Breed 5:21–31

    CAS  Google Scholar 

  • Plomion C, Pionneau C, Brach J, Costa P, Baillères H (2000) Compression wood-responsive proteins in developing xylem of maritime pine (Pinus pinaster Ait.). Plant Physiol 123:959–969

    PubMed  CAS  Google Scholar 

  • Plomion C, LeProvost G, Pot D, Vendramin G, Gerber S, Decroocq S, Brach J, Raffin A, Pastuszka P (2001) Pollen contamination in a maritime pine polycross seed orchard and certification of improved seeds using chloroplast microsatellites. Can J For Res 31:1816–1825

    Google Scholar 

  • Plomion C, Bahrman N, Costa P, Dubos C, Frigério J-M, Gerber S, Gion J-M, Lalanne C, Madur D, Pionneau C (2004) Proteomics for genetics and physiological studies in forest trees: application in maritime pine. In: Kumar S, Fladung M (eds) Molecular Genetics and Breeding of Forest Trees. Haworth, Binghamton, NY, pp 53–80

    Google Scholar 

  • Pot D (2004) Déterminisme génétique de la qualité du bois chez le pinmaritime: du phénotype aux gènes. PhD thesis, University of Rennes I, ENSAR, France

    Google Scholar 

  • Pot D, Chantre G, Rozenberg P, Rodrigues JC, Jones GL, Pereira H, Hannrup B, Cahalan C, Plomion C (2002) Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait.). Ann For Sci 59:563–575

    Google Scholar 

  • Pot D, McMillan L, Echt C, Le Provost G, Garnier-Géré P, Cato S, Plomion C (2005a) Nucleotide variation in genes involved in wood formation in two pine species. New Phytol 167:101–112

    PubMed  CAS  Google Scholar 

  • Pot D, Rodrigues J-C, Rozenberg P, Chantre G, Tibbits J, Cahalan C, Pichavant F, Plomion C (2005b) QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.). Tree Genet Genom 2:10–26

    Google Scholar 

  • Price RA, Liston A, Strauss SH (1998) Phylogeny and systematics of Pinus. In: Richardson DM (ed) Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge, UK, pp 49–68

    Google Scholar 

  • Provan J, Soranzo N, Wilson NJ, Goldstein DB, Powell W (1999) A low mutation rate for chloroplast microsatellites. Genetics 153:943–947

    PubMed  CAS  Google Scholar 

  • Quackenbush J, Cho J, Lee D, Liang F, Holt I, Karamycheva S, Parvizi B, Pertea G, Sultana R, White J (2001) The TIGR Gene Indices: analysis of gene transcript sequences in highly sampled eukaryotic species. Nucleic Acids Res 29:159–164

    PubMed  CAS  Google Scholar 

  • Quencez C, Bastien C (2001) Genetic variation within and between populations of Pinus sylvestris L. (Scots pine) for susceptibility to Melampsora pinitorqua Rostr. (pine twist rust). Heredity 86:36–44

    PubMed  CAS  Google Scholar 

  • Rabinowicz PD, Citek R, Budiman MA, Nunberg A, Bedell JA, Lakey N, O’Shaughnessy AL, Nascimento LU, McCombie WR, Martienssen RA (2005) Differential methylation of genes and repeats in land plants. Genome Res 15:1431–1440

    PubMed  CAS  Google Scholar 

  • Rabinowicz PD, Schutz K, Dedhia N, Yordan C, Parnell LD, Stein L, McCombie WR, Martienssen RA (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nat Genet 23:305–308

    PubMed  CAS  Google Scholar 

  • Rafalski A (1998) Randomly amplified polymorphic DNA (RAPD) analysis. In: Caetano-Anollés G, Gresshoff PM (eds) DNA Markers Protocols, Applications, and Overviews. Wiley-Liss, New York, pp 75–83

    Google Scholar 

  • Rake AV, Miksche JP, Hall RB, Hansen KM (1980) DNA reassociation kinetics of four conifers. Can J Genet Cytol 22:69–79

    CAS  Google Scholar 

  • Rat Genome Sequencing Project Consortium (2004) Rat Genome Sequencing Project Consortium, Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521

    Google Scholar 

  • Remington DL, O’Malley DM (2000a) Evaluation of major genetic loci contributing to inbreeding depression for survival and early growth in a selfed family of Pinus taeda. Evolution 54:1580–1589

    PubMed  CAS  Google Scholar 

  • Remington DL, O’Malley DM (2000b) Whole genome characterization of embryonic state inbreeding depression in a selfed loblolly pine family. Genetics 155:337–348

    PubMed  CAS  Google Scholar 

  • Remington DL, Whetten RW, Liu BH, O’Malley DM (1999) Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor Appl Genet 98:1279–1292

    PubMed  CAS  Google Scholar 

  • Ribeiro MM, Plomion C, Petit RJ, Vendramin GG, Szmidt AE (2001) Variation of chloroplast single-sequence repeats in Portuguese maritime pine (Pinus pinaster Ait.). Theor Appl Genet 102:97–103

    CAS  Google Scholar 

  • Richardson BA., Brunsfeld SJ, Klopfenstein NB (2002) DNA from bird-dispersed seed and wind-disseminated pollen provides insights into postglacial colonization of whitebark pine (Pinus albicaulis). Mol Ecol 11:215–227

    PubMed  CAS  Google Scholar 

  • Richardson DM, Rundel PW (1998) Ecology and biogeography of Pinus: an introduction. In: Richardson DM (ed) Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge, UK, pp 3–46

    Google Scholar 

  • Ritland K, Zhuang J, Ralph S, Ritland C, Bohlmann J (2006) Comparative conifer genomics and the new “Treenomix” program. In: Plant & Animal Genomes XIV Conf, San Diego, W12

    Google Scholar 

  • Ritter E, Aragonés A, Markussen T, Acheré V, Espinel S, Fladung M, Wrobel S, Faivre-Rampant P, Jeandroz S, Favre JM (2002) Toward construction of an ultra high density linkage map for Pinus pinaster. Ann For Sci 59:637–643

    Google Scholar 

  • Robledo-Arnuncio JJ, Collada C, Alía R, Gil L (2005) Genetic structure of montane isolates of Pinus sylvestris L. in a Mediterranean refugial area. J Biogeogr 32:595–605

    Google Scholar 

  • Rosvall O, Lindgren D, Mullen TJ (1998) Sustainability, robustness and efficiency of a multi-generation breeding strategy based on within-family clonal selection. Silvae Genet 47:307–321

    Google Scholar 

  • Rounsley S, Xiaoying L, Ketchum KA (1998) Large-scale sequencing of plant genomes. Curr Opin Plant Biol 1:136–141

    PubMed  CAS  Google Scholar 

  • Rozenberg P, Van Loo J, Hannrup B, Grabner M. 2002. Clonal variation of wood density record of cambium reaction to water deficit in Picea abies (L.) Karst. Ann For Sci 59:533–540

    Google Scholar 

  • Rudd S (2003) Expressed sequence tags: alternative or complement to whole genome sequences? Trends Plant Sci 8:321–329

    PubMed  CAS  Google Scholar 

  • Rudin D, Ekberg I (1978) Linkage studies in Pinus sylvestris L. using macrogametophyte allozymes. Silvae Genet 27:1–12

    CAS  Google Scholar 

  • Sanchez AC, Ilag LL, Yang D, Brar DS, Ausubel F, Khush GS, Yano M, Sasaki T, Li Z, Huang N (1999) Genetic and physical mappingof xa13, a recessive bacterial blight resistance gene in rice. Theor Appl Genet 98:1022–1028

    CAS  Google Scholar 

  • Sánchez C, Vielva MJ, Vieitez AM, de Mier B, Abarca D, Díaz-Sala C (2005) Identification of genes related to adventitious rooting capacity in pine and chestnut. IUFRO Tree Biotechnol, Pretoria, South Africa

    Google Scholar 

  • Sathyan P, Newton RJ, Loopstra CA (2005) Genes induced by WDS are differentially expressed in two populations of aleppo pine (Pinus halepensis). Tree Genet Genom 1:166–173

    Google Scholar 

  • Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560

    PubMed  CAS  Google Scholar 

  • Sax K, Sax HJ (1933) Chromosome numbers and morphology in the conifers. J Arnold Arbor 14:356–375

    Google Scholar 

  • Saylor LC (1961) A karyotype analysis of selected species of Pinus. Silvae Genet 10:77–85

    Google Scholar 

  • Saylor LC (1964) Karyotype analysis of Pinus-group Lariciones. Silvae Genet 13:165–170

    Google Scholar 

  • Saylor LC (1972) Karyotype analysis of Pinus-subgenus Pinus. Silvae Genet 21:155–163

    Google Scholar 

  • Saylor LC (1983) Karyotype analysis of the genus Pinus — subgenus Strobus. Silvae Genet 32:119–121

    Google Scholar 

  • Schmidt A, Doudrick RL, Heslop-Harrison JS, Schmidt T (2000) The contribution of short repeats of low sequence complexity to large conifer genomes. Theor Appl Genet 101:7–14

    CAS  Google Scholar 

  • Schmidt R (2002) Plant genome evolution: lessons from comparative genomics at the DNA level. Plant Mol Biol 48:21–37

    PubMed  CAS  Google Scholar 

  • Scotti I, Burelli A, Cattonaro F, Chagné D, Fuller J, Hedley PE, Jansson G, Lalanne C, Madur D, Neale D, Plomion C, Powell W, Troggio M, Morgante M (2005) Analysis of the distribution of marker classes in a genetic linkage map: a case study in Norway spruce (P. abies karst). Tree Genet Genom 1:93–102

    Google Scholar 

  • Scotti-Saintagne C, Bodénès C, Barreneche T, Bertocchi E, Plomion C, Kremer A (2004) Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L. Theor Appl Genet 109:1648–1659

    PubMed  CAS  Google Scholar 

  • Sewell MM, Bassoni DL, Megraw RA, Wheeler NC, Neale DB (2000) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). I. Physical wood properties. Theor Appl Genet 101:1273–1281

    CAS  Google Scholar 

  • Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Bassoni DL, Neale DB (2002). Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theor Appl Genet 104:214–222

    PubMed  CAS  Google Scholar 

  • Sewell MM, Neale DB (2000) Mapping quantitative traits in forest trees. In: Jain SM, Minocha SC (eds) Molecular Biology of Woody Plants. Kluwer, Dordrecht, pp 407–433

    Google Scholar 

  • Sewell MM, Sherman BK, Neale DB (1999) A consensus map for loblolly pine (Pinus taeda L.). I. Construction and in etegration if individual linkage maps from two outbred three-generation pedigrees. Genetics 151:321–330

    PubMed  CAS  Google Scholar 

  • Shelbourne CJA (1992) Genetic gains from different kinds of breeding population and seed or plant production populations. S Afr For J 160:49–65

    Google Scholar 

  • Shelbourne CJA (2000) Some insights on hybrids in forest tree improvement. In: Dungey HS, Dieters MJ, Nikles DG (Compl) Hybrid Breeding and Genetics of Forest Trees. Proc QFRI/CRC-SPF Symp, 9–14 April 2000, Noosa, Queensland, Australia. Dept of Pri Indus, Brisbane, pp 53–62

    Google Scholar 

  • Shelbourne CJA, Apiolaza LA, Jayawickrama KJS, Sorensson CT (1997) Developing breeding objectives for radiata pine in New Zealand. In: Burdon R, Moore JM (eds) “IUFRO’ 97 Genetics of Radiata Pine”, Proc IUFRO Conf 1–4 Dec and workshop 5 Dec, Rotorua, New Zealand. FRI Bull 203:60–168

    Google Scholar 

  • Shepherd M, Cross M, Dieters MJ, Henry R (2003) Genetic maps for Pinus elliottii var. elliottii and P. caribaea var. hondurensis using AFLP and microsatellite markers. Theor App Genet 106:1409–1419

    CAS  Google Scholar 

  • Shepherd M, Cross M, Dieters MJ, Henry R (2002b) Branch architecture QTL for Pinus elliottii var. elliottii × Pinus caribea var. hondurensis hybrids. Ann For Sci 59:617–625

    Google Scholar 

  • Shepherd M, Cross M, Maguire TL, Dieters MJ, Williams CG, Henry RJ (2002a) Transpecific microsatellites for hard pines. Theor Appl Genet 104:819–827

    PubMed  CAS  Google Scholar 

  • Shoulders E (1984) The case for planting longleaf pine. Proc of the Southern Silvicultural Res Conf, 7–8 Nov 1984, Atlanta, GA, pp 255–260

    Google Scholar 

  • Smith DN, Devey M (1994) Occurrence and inheritance of microsatellites in Pinus radiata. Genome 37:977–983

    PubMed  CAS  Google Scholar 

  • Soranzo N, Alia R, Provan J, Powell W (2000) Patterns of variation at a mitochondrial sequence-tagged-site locus provides new insights into the postglacial history of European Pinus sylvestris populations. Mol Ecol 9:1205–1211

    PubMed  CAS  Google Scholar 

  • Sorensson CT, Shelbourne CJA (2005) Clonal forestry. In: Colley M (ed) Forestry Handbook. NZ Inst of Foresters, pp 92–96

    Google Scholar 

  • Springer NM, Xu X, Barbazuk WB (2004) Utility of different gene enrichment approaches toward identifying and sequencing the maize gene space. Plant Physiol 136:3023–3033

    PubMed  CAS  Google Scholar 

  • Stelzer HE, Goldfarb B (1997) Implementing clonal forestry in the southeastern United States: SRIEG satellite workshop summary. Can J For Res 27:442–446

    Google Scholar 

  • Stirling B, Yang ZK, Gunter LE, Tuskan GA, Bradshaw HD (2003) Comparative sequence analysis between orthologous regions of the Arabidopsis and Populus genomes reveals substantial synteny and microcollinearity. Can J For Res 33:2245–2251

    CAS  Google Scholar 

  • Strabala TJ (2004) Expressed sequence tag databases from forestry tree species. In: Kumar S, Fladung M (eds) Molecular Genetics and Breeding of Forest Trees. Haworth, Binghamton, NY, pp 19–52

    Google Scholar 

  • Strauss SH, Doerksen AH (1990) Restriction fragment analysis of pine phylogeny. Evolution 44:1081–1096

    CAS  Google Scholar 

  • Strauss SH, Lande R, Namkoong G (1992) Limitations of molecular marker-aided selection in forest tree breeding. Can J For Res 22:1050–1061

    CAS  Google Scholar 

  • Stromberg LD, Dudley JD, Rufener GK (1994) Comparing conventional early generation selection with molecular marker assisted selection in maize. Crop Sci 34:1221–1225

    Google Scholar 

  • Stuber CW, Polacco M, Senior ML (1999) Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield. Crop Sci 39:1571–1583

    Google Scholar 

  • Syring J, Willyard A, Cronn R, Liston A (2005) Evolutionary relationships among Pinus (Pinaceae) subsections inferred from multiple low-copy nuclear loci. Am J Bot 92:2086–2100

    Google Scholar 

  • Syvanen AC (2001) Accessing genetic variation. Genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942

    PubMed  CAS  Google Scholar 

  • Szmidt AE, Muona O (1989) Linkage relationships of allozyme loci in Pinus sylvestris. Heredity 111:91–97

    CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Google Scholar 

  • Telfer EJ, Echt CS, Nelson CD, Wilcox PL (2006) Comparative mapping in Pinus radiata and P. taeda reveals co-location of wood density-related QTL. In: Plant & Animal Genome XIV Conf, San Diego

    Google Scholar 

  • Temesgen B, Brown GR, Harry DE, Kinlaw CS, Sewell MM, Neale DB (2001) Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda L.). Theor Appl Genet 102:664–675

    CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Thiellement H, Plomion C, Zivy M (2001) Proteomics as a tool for plant genetics and breeding. In:Dunn MJ, Pennington S (eds) Proteomics: from protein sequence to function. BIOS, Oxford, pp 289–309

    Google Scholar 

  • Thoday JM (1961) Location of polygenes. Nature 191:368–370

    Google Scholar 

  • Thumma BR, Nolan MF, Evans R, Moran GF (2005) Polymorphisms in Cinnamoyl CoA Reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171:1257–1265

    PubMed  CAS  Google Scholar 

  • Travis SE, Ritland K, Whitham TG, Keim P (1998) A genetic linkage map of pinyon pine (Pinus edulis) based on amplified fragment length polymorphisms. Theor Appl Genet 97:871–880

    CAS  Google Scholar 

  • Tulsieram LK, Glaubitz JC, Kiss G, Carlson JE (1992) Single tree genetic linkage mapping in conifers using haploid DNA from megagametophytes. Bio/Technology 10:686–690

    PubMed  CAS  Google Scholar 

  • Tuskan GA, DiFazio SP, Teichmann T (2004) Poplar genomics is getting popular: the impact of the poplar genome project on tree research. Plant Biol (Stuttg) 6:2–4

    PubMed  CAS  Google Scholar 

  • Van der Burgh J (1973) Hölzer der nierderrheinischen Braunkohlenformation. 2. Hölzer der Braunkohlengruben ‚Maria Theresia ‘zu Herzogenrath, ‚Zukunft West ‘zu Eschweiler und ‚Victor ‘(Zülpich Mitte) zu Zülpich. Nebst einer systematisch-anatomischen Bearbeitung der Gattung Pinus L. Rev Palaeobot Palynol 15:73–275

    Google Scholar 

  • van Tienderen PH, de Haan AA, van der Linden CG, Vosman B (2002) Biodiversity assessment using markers for ecologically important traits. Trends Ecol Evol 17:577–582

    Google Scholar 

  • van Zyl L, von Arnold S, Bozhkov P, Chen Y, Egertsdotter U, MacKay J, Sederoff R, Weir B, Shen J, Sun Y-H, Whetten R, Zelena L, Clapham D (2002) Heterologous array analysis in Pinaceae: hybridization of Pinus taeda cDNA arrays with cDNA from needles and embryogenic cultures of P. taeda, P. sylvestris or Picea abies. Comp Funct Genom 3:306–318

    Google Scholar 

  • Verhaegen D, Plomion C, Poitel M, Costa P, Kremer A (1998) Quantitative trait disscetion analysis in Eucalyptus using RAPD markers: 2. linkage disequilibrium in a factorial design between E. urophylla and E. Grandis. For Genet 5:61–69

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    PubMed  CAS  Google Scholar 

  • Wahlenberg WG (1946) Longleaf Pine. Charles Lathrop Pack Forestry Foundation, Washington, DC

    Google Scholar 

  • Wakamiya I, Price HJ, Messina MG, Newton RJ (1996) Pine genome size diversity and water relations. Physiol Planta 96:13–20

    CAS  Google Scholar 

  • Walker S, Haines R, Dieters M (1996) Beyond 2000. In: Dieters MJ, Matheson AC, Nikles DG, Harwood CE (eds) Clonal Forestry in Queensland. Queensland For Res Inst. Tree Improvement for Sustainable Tropical Forestry. QFRIIUFRO Conf, Caloundra, Queensland, Australia, 27 Oct–1 Nov 1996, vol 2, pp 351–354

    Google Scholar 

  • Walter R, Epperson BK (2001) Geographic pattern of genetic variation in Pinus resinosa: area of greatest diversity is not the origin of postglacial populations. Mol Ecol 10:103–111

    PubMed  CAS  Google Scholar 

  • Wang XR, Szmidt AE, Nguyen HN (2000) The phylogenetic position of the endemic flat-needle pine Pinus krempfii (Pinaceae) from Vietnam based on PCR-RFLP analysis of chloroplast DNA. Plant Syst Evol 220:21–36

    CAS  Google Scholar 

  • Wang XR, Szmidt AE, Savolainen O (2001) Genetic composition and diploid hybrid speciation of a high mountain pine, Pinus densata, native to the Tibetan plateau. Genetics 159:337–346

    PubMed  CAS  Google Scholar 

  • Wang XT, Tsumara Y, Yoshimaru H, Nagasaka K, Szmidt A (1999) Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, matK, rpl20-rps18 spacer, and trnV intron sequences. Am J Bot 86:1742–1753

    PubMed  CAS  Google Scholar 

  • Ware D, Jaiswal P, Ni J, Pan X, Chang K, Clark K, Teytelman L, Schmidt S, Zhao W, Cartinhour S, McCouch S, Stein L (2002) Gramene: a resource for comparative grass genomics. Nucleic Acids Res 30:103–105

    PubMed  CAS  Google Scholar 

  • Watkinson JI, Sioson AA, Vasquez-Robinet C, Shukla M, Kumar D, Ellis M, Heath LS, Ramakrishnan N, Chevone B, Watson LT, van Zyl L, Egertsdotter U, Sederoff RR, Grene R, et al (2003) Photosynthetic acclimation is reflected in specific patterns of gene expression in drought-stressed loblolly pine. Plant Physiol 133:1702–1716

    PubMed  CAS  Google Scholar 

  • Wei RP, Lindgren D, Yeh FC (1997) Expected gain and status number following restricted individual and combined-index selection. Genome 40:1–8

    Google Scholar 

  • Weng C, Kubisiak TL, Nelson CD, Stine M (2002) Mapping quantitative trait loci controlling early growth in a (longleaf pine × slash pine) × slash pine BC1 family. Theor Appl Genet104:852–859

    PubMed  CAS  Google Scholar 

  • Weng C, Kubisiak TL, Stine M (1998) SCAR markers in a longleaf pine × slash pine F1 family. For Genet 5:239–247

    Google Scholar 

  • Whetten R, Sun Y, Zhang Y Sederoff RR (2001) Functional genomics and cell wall biosynthesis in loblolly pine. Plant Mol Biol 47:275–291

    PubMed  CAS  Google Scholar 

  • Whitelaw CA, Barbazuk WB, Pertea G, Chan AP, Cheung F, Lee Y, van Heeringen S, Karamycheva S, Bennetzen JL, San Miguel P, Lakey N, Bedford J, Yuan Y, Budiman MA, Resnick A, van Aken S, Utterback T, Riedmuller S, Williams SM, Feldblyum T, Schubert K, Beachy R, Fraser CM, Quackenbush J (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302:2118–2120

    PubMed  Google Scholar 

  • Wilcox PL (1995) Genetic dissection of fusiform rust resistance. PhD Thesis, Dept of Forestry, North Carolina State University, Raleigh, NC

    Google Scholar 

  • Wilcox PL (1997) Linkage groups, map length, and recombination in Pinus radiata. In: Burdon RD, Moore JM (eds) “IUFRO’ 97 Genetics of Radiata Pine”, Proc IUFRO Conf 1–4 Dec and workshop 5 Dec, Rotorua, New Zealand. FRI Bull 20

    Google Scholar 

  • Wilcox PL, Burdon RD (2006) Application of association genetics to coniferous forest trees. In: Proc 13th Australasian Plant Breed Conf, Christchurch, New Zealand pp 651–659, http://www.apbc.org.nz

    Google Scholar 

  • Wilcox PL, Amerson HV, Kuhlman EG, Liu B-H, O’Malley DM, Sederoff RR (1996) Detection of a major gene for resistance to fusiform rust disease in loblolly pine by genomic mapping. Proc Natl Acad Sci USA 93:3859–3864

    PubMed  CAS  Google Scholar 

  • Wilcox PL, Richardson TE, Carson SD (1997) Nature of quantitative trait variation in Pinus radiata: insights from QTL detection experiments. In: Burdon RD, Moore JM (eds) “IUFRO’ 97 Genetics of Radiata Pine”, Proc IUFRO Conf 1–4 Dec and workshop 5 Dec, Rotorua, New Zealand. FRI Bull 203:304–312

    Google Scholar 

  • Wilcox PL, Richardson TE, Corbet GE, Ball RD, Lee JR, Djorovic A, Carson SD (2001a) Framework Linkage Maps of Pinus radiata D. Don based on pseudotestcross markers. For Genet 8:109–117

    Google Scholar 

  • Wilcox PL, Carson SD, Richardson TE, Ball RD, Horgan GP, Carter P (2001b) Benefit-cost analysis of DNA marker-based selection in progenies of Pinus radiata seed orchard parents. Can J For Res 31:2213–2224

    Google Scholar 

  • Wilcox PL, Echt CS, Cato SA, McMillan LK, Kumar S, Ball RD, Burdon RD, Pot D (2003) Gene assisted selection — a new paradigm for selection in forest tree species? In: Plant & Animal Genomes XI Conf, San Diego

    Google Scholar 

  • Wilcox PL, Cato S, McMillan L, Power M, Ball RD, Burdon RD, Echt CS (2004) Patterns of linkage disequilibrium in Pinus radiata. In: Plant & Animal Genome XII Conf, San Diego, W89. http://www.intlpag.org/12/abstracts/W22_PAG12_89.html

    Google Scholar 

  • Wilcox PL, Echt CS, Burdon RD (2007) Gene-assisted selection: applications of association genetics for forest tree breeding. In: Oraguzie N, Rikkerink EHA, Gardiner SA, Nihal De Silva H (eds) Association Mapping in Plants. Springer, Berlin Heidelberg New York, pp 211–247

    Google Scholar 

  • Williams CG, Neale DB (1992) Conifer wood quality and marker-aided selection: a case study. Can J For Res 22:1009–1017

    Google Scholar 

  • Williams C, Megraw RA (1993) Juvenile-mature relationships for wood density in Pinus taeda. Can J For Res 24:714–722

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    PubMed  CAS  Google Scholar 

  • Williams CG, Zhou Y, Hall SE (2001) A chromosomal region promoting outcrossing in a conifer. Genetics 159:1283–1289

    PubMed  CAS  Google Scholar 

  • Wright SI, Gaut BS (2005) Molecular population genetics and the search for adaptive evolution in plants. Mol Biol Evol 22:506–519

    PubMed  CAS  Google Scholar 

  • Wu H (2002) Study of early selection in tree breeding. 4. Efficiency of marker aided early selection (MAES). Silvae Genet 51:261–269

    Google Scholar 

  • Wu J, Krutovskii KV, Strauss SH (1999) Nuclear DNA diversity, population differentiation, and phylogenetic relationship in the Californian closed-cone pines based on RAPD and allozyme markers. Genome 42:893–908

    CAS  Google Scholar 

  • Wu R, Ma C-X, Casella G (2002) Joint linkage and linkage disequilibrium mapping of quantitative trait loci in natural populations. Genetics 160:779–792.

    PubMed  CAS  Google Scholar 

  • Yan HH, Mudge J, Kim DJ, Shoemaker RC, Cook DR, Young ND (2004) Comparative physical mapping reveals features of microsynteny between Glycine max, Medicago truncatula, and Arabidopsis thaliana. Genome 47:141–155

    PubMed  CAS  Google Scholar 

  • Yang SH, Loopstra CA (2005) Seasonal variation in gene expression for loblolly pines (Pinus taeda) from different geographical regions. Tree Physiol 25:1063–107325(8)

    PubMed  CAS  Google Scholar 

  • Yazdani R, Nilsson JE, Plomion C, Mathur G (2003) Marker trait association for autumn cold acclimatation and growth rhythm in Pinus sylvestris. Scand J For Res 18:29–38

    Google Scholar 

  • Yazdani R, Yeh FC, Rimsha J (1995) Genomicmapping of Pinus sylvestris (L.) using random amplified polymorphic DNA markers. For Genet 2:109–116

    Google Scholar 

  • Yin TM, Huang MR, Wang MX, Zhu LH, Zhai WX (1997) Construction of molecular linkage map in masson pine using RAPD markers and megagametophytes from a single tree. Acta Bot Sin 39:607–612

    CAS  Google Scholar 

  • Yin TM, Wang XR, Andersson B, Lerceteau-Köhler E (2003) Nearly complete maps of Pinus sylvestris L. (Scots pine) constructed by AFLP marker analysis in a full-sib family. Theor Appl Genet 106:1075–1083

    PubMed  CAS  Google Scholar 

  • Yuan Y, SanMiguel PJ, Bennetzen JL (2003) High-Cot sequence analysis of the maize genome. Plant J 34:249–255

    PubMed  CAS  Google Scholar 

  • Zeng ZB (1993a) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    PubMed  CAS  Google Scholar 

  • Zeng ZB (1993b) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    Google Scholar 

  • Zeng ZB, Liu J, Stam LF, Kao CH, Mercer JM, Cathy CL (2000) Genetic architecture of a morphological shape difference between two drosophila species. Genetics 154:299–310

    PubMed  CAS  Google Scholar 

  • Zhang H-B, Wu C (2001) BACs as tools for genome sequencing. Plant Physiol Biochem 39:195–209

    CAS  Google Scholar 

  • Zheng Y, Ennos R, Wang HR, Zheng YQ, Wang HR (1994) Provenance variation and genetic parameters in a trial of Pinus caribaea Morelet var. bahamensis Barr and Golf. For Genet 1:165–174

    Google Scholar 

  • Zhou Y, Bui T, Auckland L, Williams CG (2002) Undermethylation as a Source of microsatellites in large plant genomes. Genome 34:91–99

    Google Scholar 

  • Zhou Y, Gwaze DP, Reyes-Valdes MH, Biu T, Williams CG (2003) No clustering for linkage map based on low-copy and undermethylated microsatellites. Genome 46:809–816

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plomion, C. et al. (2007). Pines. In: Kole, C. (eds) Forest Trees. Genome Mapping and Molecular Breeding in Plants, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34541-1_2

Download citation

Publish with us

Policies and ethics