Skip to main content

New Therapies for Chronic Myeloid Leukemia

  • Chapter
Book cover Myeloproliferative Disorders

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 955 Accesses

Abstract

Despite the excellent clinical results with imatinib in chronic myeloid leukemia, most patients have minimal residual disease and others will develop resistance and may eventually progress. Thus there is a need for developing approaches to overcome and prevent resistance to imatinib. The “second generation” of more potent tyrosine kinase inhibitors have shown significant activity in the laboratory and in the clinic. However, there is considerable interest in developing agents that may act on different pathways that could either be combined with these inhibitors to better overcome and eventually prevent the development of resistance, to deal with mechanisms of resistance common to all inhibitors, or to deal with the problem of residual disease, that could be mediated by a stem cell insensitive to tyrosine kinase inhibitors. To this effect, many agents have been developed and have already entered the clinical arena, such as hypomethylating agents, farnesyl transferase inhibitors, and homoharringtonine, with promising preclinical and clinical results. Others may have been tested only at a preclinical level but have shown important activity. In addition, the use of immune modulation, for example, in the form of “vaccines,” is evolving as a major strategy to achieve eradication of minimal residual disease. This chapter will discuss some of the different agents currently under development, with particular attention to those already in clinical trials. The challenge for the future is to incorporate them into effective strategies that can eliminate the disease and cure all patients with chronic myeloid leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622

    PubMed  CAS  Google Scholar 

  • Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D, Koller C, Estrov Z, O’Brien S, Keating M, Freireich E, Albitar M (2000) Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 96:2240–2245

    PubMed  CAS  Google Scholar 

  • Appel S, Boehmler AM, Grunebach F, Muller MR, Rupf A, Weck MM, Hartmann U, Reichardt VL, Kanz L, Brummendorf TH, Brossart P (2004) Imatinib mesylate affects the development and function of dendritic cells generated from CD34+ peripheral blood progenitor cells. Blood 103:538–544

    PubMed  CAS  Google Scholar 

  • Ashkenazi A (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2:420–430

    PubMed  CAS  Google Scholar 

  • Asimakopoulos FA, Shteper PJ, Krichevsky S, Fibach E, Polliack A, Rachmilewitz E, Ben-Neriah Y, Ben-Yehuda D (1999) ABL1 methylation is a distinct molecular event associated with clonal evolution of chronic myeloid leukemia. Blood 94:2452–2460

    PubMed  CAS  Google Scholar 

  • Barrett J (2003) Allogeneic stem cell transplantation for chronic myeloid leukemia. Semin Hematol 40:59–71

    PubMed  Google Scholar 

  • Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196

    PubMed  CAS  Google Scholar 

  • Beaupre DM, Kurzrock R (1999) RAS and leukemia: from basic mechanisms to gene-directed therapy. J Clin Oncol 17:1071–1079

    PubMed  CAS  Google Scholar 

  • Bellantuono I, Gao L, Parry S, Marley S, Dazzi F, Apperley J, Goldman JM, Stauss HJ (2002) Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood 100:3835–3837

    PubMed  CAS  Google Scholar 

  • Bellen DW, Graeven U, Elmaagacli AH, Niederle N, Kloke O, Opalka B, Schaefer UW (1995) Prolonged administration of interferon-alpha in patients with chronic-phase Philadelphia chromosome-positive chronic myelogenous leukemia before allogeneic bone marrow transplantation may adversely affect transplant outcome. Blood 85:2981–2990

    Google Scholar 

  • Bhojani MS, Rossu BD, Rehemtulla A (2003) TRAIL and anti-tumor responses. Cancer Biol Ther 2:S71–78

    PubMed  CAS  Google Scholar 

  • Binder RJ, Srivastava PK (2005) Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol 6:593–599

    PubMed  CAS  Google Scholar 

  • Bocchia M, Gentili S, Abruzzese E, Fanelli A, Iuliano F, Tabilio A, Amabile M, Forconi F, Gozzetti A, Raspadori D (2005) Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial. Lancet 365:657–662

    PubMed  CAS  Google Scholar 

  • Borrello H, Levitsky H, Damon L, Linker C, DeAngelo D, Elyea E, Stock W, Sher D, Donnelly A, Hege K (2005) Vaccine-associated immune and WT-1 responses are associated with better relapse-free survival in patients with AML in remission treated with a GM-CSF secreting leukemia vaccine and autologous stem cell transplant. J Clin Oncol, 23:569s (abstract no 6539)

    Google Scholar 

  • Borthakur G, Kantarjian H, Daley GQ, Talpaz M, O’Brien M, Garcia-Manero G, Giles F, Faderl S, Sugrue M, Cortes J (2006) Pilot study of lonafarnib (SCH66336, Sarasar), a farnesyl transferase inhibitor, in patients with chronic myeloid leukemia in chronic or accelerated phase resistant or refractory to imatinib. Cancer 106:346–352

    PubMed  CAS  Google Scholar 

  • Branford S, Rudzki Z, Parkinson I, Grigg A, Taylor K, Seymour JF, Durrant S, Browett P, Schwarer AP, Arthur C, Catalano J, Leahy MF, Filshie R, Bradstock K, Herrmann R, Joske D, Lynch K, Hughes T (2004) Realtime quantitative PCR analysis can be used as a primary screen to identify patients with CML treated with imatinib who have BCR-ABL kinase domain mutations. Blood 104:2926–2932

    PubMed  CAS  Google Scholar 

  • Burchert A, Wolfl S, Schmidt M, Brendel C, Denecke B, Cai D, Odyvanova L, Lahaye T, Muller MC, Berg T, Gschaidmeier H, Wittig B, Hehlmann R, Hochhaus A, Neubauer A (2003) Interferon-alpha, but not the ABL-kinase inhibitor imatinib (STI571), induces expression of myeloblastin and a specific T-cell response in chronic myeloid leukemia. Blood 101:259–264

    PubMed  CAS  Google Scholar 

  • Carter TA, Wodicka LM, Shah NP, Velasco AM, Fabian MA, Treiber DK, Milanov ZV, Atteridge CE, Biggs WH, 3rd, Edeen PT, Floyd M, Ford JM, Grotzfeld RM, Herrgard S, Insko DE, Mehta SA, Patel HK, Pao W, Sawyers CL, Varmus H, Zarrinkar PP, Lockhart DJ (2005) Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc Natl Acad Sci USA, 102:11011–11016

    PubMed  CAS  Google Scholar 

  • Cathcart K, Pinilla-Ibarz J, Korontsvit T, Schwartz J, Zakhaleva V, Papadopoulos EB, Scheinberg DA (2004) A multivalent bcr-abl fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood 103:1037–1042

    PubMed  CAS  Google Scholar 

  • Chen R, Benaissa S, Plunkett W (2003) A sequential blockade strategy to target the Bcr/Abl oncoprotein in chronic myelogenous leukemia with STI571 and the protein synthesis inhibitor homoharringtonine. Proc Am Assoc Cancer Res 44:34 (abstract no 3788)

    Google Scholar 

  • Chen T, Meier R, Ziemiecki A, Fey MF, Tobler A (1994) Myeloblastin/proteinase 3 belongs to the set of negatively regulated primary response genes expressed during in vitro myeloid differentiation. Biochem Biophys Res Commun, 200:1130–1135

    PubMed  CAS  Google Scholar 

  • Chen W, Peace DJ, Rovira DK, You SG, Cheever MA (1992) T-cell immunity to the joining region of p210BCR-ABL protein. Proc Natl Acad Sci USA 89:1468–1472

    PubMed  CAS  Google Scholar 

  • Choi Y.-J, Wang Q, White S, Gorre ME, Sawyers CL, Bollag G (2002) Imatinib-resistant cell lines are sensitive to the Raf inhibitor BAY 43-9006. Blood 100:369a (abstract no 1427)

    Google Scholar 

  • Choudhury A, Gajewski JL, Liang JC, Popat U, Claxton DF, Kliche KO, Andreeff M, Champlin RE (1997) Use of leukemic dendritic cells for the generation of antileukemic cellular cytotoxicity against Philadelphia chromosome-positive chronic myelogenous leukemia. Blood 89:1133–1142

    PubMed  CAS  Google Scholar 

  • Chuah C, Barnes DJ, Kwok M, Corbin A, Deininger MW, Druker BJ, Melo JV (2005) Zoledronate inhibits proliferation and induces apoptosis of imatinib-resistant chronic myeloid leukaemia cells. Leukemia 19:1896–1904

    PubMed  CAS  Google Scholar 

  • Clark RE, Dodi IA, Hill SC, Lill JR, Aubert G, Macintyre AR, Rojas J, Bourdon A, Bonner PL, Wang L, Christmas SE, Travers PJ, Creaser CS, Rees RC, Madrigal JA (2001) Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein. Blood 98:2887–2893

    PubMed  CAS  Google Scholar 

  • Corbin AS, Rosee PL, Stoffregen EP, Druker BJ, Deininger MW (2003) Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood 101:4611–4614

    PubMed  CAS  Google Scholar 

  • Cortes J, Albitar M, Thomas D, Giles F, Kurzrock R, Thibault A, Rackoff W, Koller C, O’Brien S, Garcia-Manero G, Talpaz M, Kantarjian H (2003a) Efficacy of the farnesyl transferase inhibitor R115777 in chronic myeloid leukemia and other hematologic malignancies. Blood 101:1692–1697

    PubMed  CAS  Google Scholar 

  • Cortes J, Giles F, O’Brien S, Beran M, McConkey D, Wright J, Scheinkein D, Patel G, Verstovsek S, Pate O, Talpaz M, Kantarjian H (2003b) Phase II study of bortezomib (VELCADE, formerly PS341) for patients with imatinib-refractory chronic myeloid leukemia in chronic or accelerated phase. Blood 102:312b (abstract no 4971)

    Google Scholar 

  • Cortes J, O’Brien M, Verstovsek S, Thomas D, Giles F, Garcia-Manero G, Murgo A, Newman R, Rios MB, Talpaz M, Kantarjian H (2003c) Phase I study of subcutaneous homoharringtonine for patients with chronic myelogenous leukemia. Blood 102:322b (abstract no 5010)

    Google Scholar 

  • Cortes J, Garcia-Manero G, O’Brien S, Hernandez I, Rackoff W, Faderl S, Thomas D, Ferrajoli A, Talpaz M, Kantarjian H (2004a) A phase i study of tipifarnib in combination with imatinib mesylate (IM) for patients (Pts) with chronic myeloid leukemia (CML) in chronic phase (CP) who failed IM therapy. Blood 104:(abstract no 1011)

    Google Scholar 

  • Cortes J, O’Brien S, Verstovsek S, Daley GQ, Koller C, Ferrajoli A, Pate O, Faderl S, Ravandi F, Talpaz M, Zhu Y, Statkevich P, Sugrue M, Kantarjian H (2004b) Phase I study of lonafarnib (SCH66336) in combination with imatinib for patients (Pts) with chronic myeloid leukemia (CML) after failure to imatinib. Blood 104:(abstract no 1009)

    Google Scholar 

  • Cortes J, Talpaz M, O’Brien S, Jones D, Luthra R, Shan J, Giles F, Faderl S, Verstovsek S, Garcia-Manero G, Rios MB, Kantarjian H (2005) Molecular responses in patients with chronic myelogenous leukemia in chronic phase treated with imatinib mesylate. Clin Cancer Res 11:3425–3432

    PubMed  CAS  Google Scholar 

  • Cullis JO, Barrett AJ, Goldman JM, Lechler RI (1994) Binding of BCR/ABL junctional peptides to major histocompatibility complex (MHC) class I molecules: studies in antigen-processing defective cell lines. Leukemia 8:165–170

    PubMed  CAS  Google Scholar 

  • Dai Y, Rahmani M, Pei XY, Dent P, Grant S (2004) Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and-independent mechanisms. Blood 104:509–518

    PubMed  CAS  Google Scholar 

  • Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247:824–830

    PubMed  CAS  Google Scholar 

  • Dengler R, Munstermann U, Al-Batran S, Hausner I, Faderl S, Nerl C, Emmerich B (1995) Immunocytochemical and flow cytometric detection of proteinase 3 (myeloblastin) in normal and leukaemic myeloid cells. Br J Haematol 89:250–257

    PubMed  CAS  Google Scholar 

  • Doggrell SA (2004) Dawn of Aurora kinase inhibitors as anticancer drugs. Expert Opin Investig Drugs 13:1199–1201

    PubMed  CAS  Google Scholar 

  • Donato NJ, Wu JY, Stapley J, Lin H, Arlinghaus R, Aggarwal BB, Shishodin S, Albitar M, Hayes K, Kantarjian H, Talpaz M (2004) Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Cancer Res 64:672–677

    PubMed  CAS  Google Scholar 

  • Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM (1999) The biology of chronic myeloid leukemia. N Engl J Med 341:164–172

    PubMed  CAS  Google Scholar 

  • Fresno M, Jimenez A, Vazquez D (1977) Inhibition of translation in eukaryotic systems by harringtonine. Eur J Biochem 72:323–330

    PubMed  CAS  Google Scholar 

  • Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103

    PubMed  CAS  Google Scholar 

  • Gao L, Bellantuono I, Elsasser A, Marley SB, Gordon MY, Goldman JM, Stauss HJ (2000) Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 95:2198–2203

    PubMed  CAS  Google Scholar 

  • Gao L, Xue SA, Hasserjian R, Cotter F, Kaeda J, Goldman JM, Dazzi F, Stauss HJ (2003) Human cytotoxic T lymphocytes specific for Wilms’ tumor antigen-1 inhibit engraftment of leukemia-initiating stem cells in non-obese diabetic-severe combined immunodeficient recipients. Transplantation 75:1429–1436

    PubMed  Google Scholar 

  • Gatto S, Scappini B, Pham L, Onida F, Milella M, Ball G, Ricci C, Divoky V, Verstovsek S, Kantarjian HM, Keating MJ, Cortes-Franco JE, Beran M (2003) The proteasome inhibitor PS-341 inhibits growth and induces apoptosis in Bcr/Abl-positive cell lines sensitive and resistant to imatinib mesylate. Haematologica 88:853–863

    PubMed  CAS  Google Scholar 

  • Goetz MP, Toft DO, Ames MM, Erlichman C (2003) The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol 14:1169–1176

    PubMed  CAS  Google Scholar 

  • Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CL (2002) BCR-ABL point mutants isolated from patients with imatinib mesylateresistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood 100:3041–3044

    PubMed  CAS  Google Scholar 

  • Gotlib J, Mauro MJ, O’Dwyer M, Fechter L, Dugan K, Kuyl J, Yekrang A, Mori M, Rackoff W, Coutre S, Druker BJ, Greenberg PL (2003) Tpipifarnib (Zarnestra) and imatinib (Gleevec) combination therapy in patients with advanced chronic myelogenous leukemia (CML): preliminary results of a phase I study. Blood 102:909a (abstract no 3384)

    Google Scholar 

  • Griswold IJ, Bumm T, O’Hare T, Moseson EM, Druker B, Deininger MW (2004) Investigation of the biological differences between Bcr-Abl kinase mutations resistant to imatinib. Blood 104:161a (abstract no 555)

    Google Scholar 

  • Gu JJ, Santiago L, Mitchell BS (2005) Synergy between imatinib and mycophenolic acid in inducing apoptosis in cell lines expressing Bcr-Abl. Blood 105:3270–3277

    PubMed  CAS  Google Scholar 

  • Guilhot F, Lacotte-Thierry L (1998) Interferon-alpha: mechanisms of action in chronic myelogenous leukemia in chronic phase. Hematol Cell Ther 40:237–239

    PubMed  CAS  Google Scholar 

  • Gumireddy K, Baker SJ, Cosenza SC, John P, Kang AD, Robell KA, Reddy MV, Reddy EP (2005a) A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance. Proc Natl Acad Sci USA 102:1992–1997

    PubMed  CAS  Google Scholar 

  • Gumireddy K, Reddy MVR, Cosenza SC, Nathan RB, Baker SJ, Papathi N, Jiang J, Holland J, Reddy EP (2005b) ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 7:275–286

    PubMed  CAS  Google Scholar 

  • Hamdane M, David-Cordonnier MH, D’Halluin JC (1997) Activation of p65 NF-kappaB protein by p210BCR-ABL in a myeloid cell line (P210BCR-ABL activates p65 NF-kappaB). Oncogene 15:2267–2275

    PubMed  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    PubMed  CAS  Google Scholar 

  • Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T, Graham JA, Demur C, Hercend T, Diu-Hercend A, Su M, Golec JM, Miller KM (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10:262–267

    PubMed  CAS  Google Scholar 

  • He Y, Wertheim JA, Xu L, Miller JP, Karnell FG, Choi JK, Ren R, Pear WS (2002) The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood 99:2957–2968

    PubMed  CAS  Google Scholar 

  • Hoover RR, Mahon F.-X, Melo JV, Daley GQ (2002) Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood 100:1068–1071

    PubMed  CAS  Google Scholar 

  • Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML, Gathmann I, Bolton AE, van Hoomissen IC, Goldman JM, Radich JP (2003) Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 349:1423–1432

    PubMed  CAS  Google Scholar 

  • Issa JP, Kantarjian H, Mohan A, O’Brien S, Cortes J, Pierce S, Talpaz M (1999) Methylation of the ABL1 promoter in chronic myelogenous leukemia: lack of prognostic significance. Blood 93:2075–2080

    PubMed  CAS  Google Scholar 

  • Issa J-PJ, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S, Bayar E, Lyons J, Rosenfeld CS, Cortes J, Kantarjian HM (2004) Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103:1635–1640

    PubMed  CAS  Google Scholar 

  • Issa JP, Gharibyan V, Cortes J, Jelinek J, Morris G, Verstovsek S, Talpaz M, Garcia-Manero G, Kantarjian HM (2005) Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol, 23:3948–3956

    PubMed  CAS  Google Scholar 

  • Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet, 21:163–167

    PubMed  CAS  Google Scholar 

  • Jorgensen HG, Allan EK, Graham SM, Godden JL, Richmond L, Elliott MA, Mountford JC, Eaves CJ, Holyoake TL (2005) Lonafarnib reduces the resistance of primitive quiescent CML cells to imatinib mesylate in vitro. Leukemia 19:1184–1191

    PubMed  CAS  Google Scholar 

  • Kang CD, Yoo SD, Hwang BW, Kim KW, Kim DW, Kim CM, Kim SH, Chung BS (2000) The inhibition of ERK/MAPK not the activation of JNK/SAPK is primarily required to induce apoptosis in chronic myelogenous leukemic K562 cells. Leuk Res, 24:527–534

    PubMed  CAS  Google Scholar 

  • Kano Y, Akutsu M, Tsunoda S, Mano H, Sato Y, Honma Y, Furukawa Y (2001) In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood 97:1999–2007

    PubMed  CAS  Google Scholar 

  • Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, Niederwieser D, Resta D, Capdeville R, Zoellner U, Talpaz M, Druker B (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346:645–652

    PubMed  CAS  Google Scholar 

  • Kantarjian HM, Talpaz M, Smith TL, Cortes J, Giles FJ, Rios MB, Mallard S, Gajewski J, Murgo A, Cheson B, O’Brien S (2000) Homoharringtonine and low-dose cytarabine in the management of late chronicphase chronic myelogenous leukemia. J Clin Oncol 18:3513–3521

    PubMed  CAS  Google Scholar 

  • Kantarjian HM, O’Brien S, Cortes J, Giles FJ, Faderl S, Issa JP, Garcia-Manero G, Rios MB, Shan J, Andreeff M, Keating M, Talpaz M (2003a) Results of decitabine (5-aza-2′deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia. Cancer 98:522–528

    PubMed  CAS  Google Scholar 

  • Kantarjian HM, O’Brien S, Cortes JE, Shan J, Giles FJ, Rios MB, Faderl SH, Wierda WG, Ferrajoli A, Verstovsek S, Keating MJ, Freireich EJ, Talpaz M (2003b) Complete cytogenetic and molecular responses to interferon-alpha-based therapy for chronic myelogenous leukemia are associated with excellent long-term prognosis. Cancer 97:1033–1041

    PubMed  CAS  Google Scholar 

  • Karp JE, Lancet JE, Kaufmann SH, End DW, Wright JJ, Bol K, Horak I, Tidwell ML, Liesveld J, Kottke TJ, Ange D, Buddharaju L, Gojo I, Highsmith WE, Belly RT, Hohl RJ, Rybak ME, Thibault A, Rosenblatt J (2001) Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical-laboratory correlative trial. Blood 97:3361–3369

    PubMed  CAS  Google Scholar 

  • Katsoulas A, Rachid Z, Brahimi F, McNamee J, Jean-Claude BJ (2005) Engineering 3-alkyltriazenes to block bcr-abl kinase: a novel strategy for the therapy of advanced bcr-abl expressing leukemias. Leuk Res 29:693–700

    PubMed  CAS  Google Scholar 

  • Keen N, Taylor S (2004) Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 4:927–936

    PubMed  CAS  Google Scholar 

  • Kimura S, Kuroda J, Segawa H, Sato K, Nogawa M, Yuasa T, Ottmann OG, Maekawa T (2004) Antiproliferative efficacy of the third-generation bisphosphonate, zoledronic acid, combined with other anticancer drugs in leukemic cell lines. Int J Hematol 79:37–43

    PubMed  CAS  Google Scholar 

  • Klejman A, Rushen L, Morrione A, Slupianek A, Skorski T (2002) Phosphatidylinositol-3 kinase inhibitors enhance the anti-leukemia effect of STI571. Oncogene 21:5868–5876

    PubMed  CAS  Google Scholar 

  • Korus M, Mahon GM, Cheng L, Whitehead IP (2002) p38 MAPKmediated activation of NF-kappaB by the RhoGEF domain of Bcr. Oncogene 21:4601–4612

    PubMed  CAS  Google Scholar 

  • Kuliczkowski K (1989) Influence of harringtonine on human leukemia cell differentiation. Arch Immunol Ther Exp (Warsz), 37:69–76

    CAS  Google Scholar 

  • Kuroda J, Kimura S, Segawa H, Kobayashi Y, Yoshikawa T, Urasaki Y, Ueda T, Enjo F, Tokuda H, Ottmann OG, Maekawa T (2003) The third-generation bisphosphonate zoledronate synergistically augments the anti-Ph+ leukemia activity of imatinib mesylate. Blood 102:2229–2235

    PubMed  CAS  Google Scholar 

  • La Rosee P, Johnson K, Corbin AS, Stoffregen EP, Moseson EM, Willis S, Mauro MM, Melo JV, Deininger MW, Druker BJ (2004) In vitro efficacy of combined treatment depends on the underlying mechanism of resistance in imatinib-resistant Bcr-Abl-positive cell lines. Blood 103:208–215

    PubMed  Google Scholar 

  • Laird PW, Jackson-Grusby L, Fazeli A, Dickinson SL, Jung WE, Li E, Weinberg RA, Jaenisch R (1995) Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81:197–205

    PubMed  CAS  Google Scholar 

  • Li JM, Wang AH, Sun HP, Shen Y, Zhao RH, Gu BW, Chen B, Xing W, Shen ZX, Wang ZY, Chen SJ, Chen Z (2004) Phase I clinical trial of Glivec in combination with tetra-arsenic tetra-sulfide in the treatment of CML patients in advanced phase. Blood 104:247b (abstract no 4653)

    Google Scholar 

  • Li Z, Qiao Y, Liu B, Laska EJ, Chakravarthi P, Kulko JM, Bona RD, Fang M, Hegde U, Moyo V, Tannenbaum SH, Menoret A, Gaffney J, Glynn L, Runowicz CD, Srivastava PK (2005) Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia. Clin Cancer Res, 11:4460–4468

    PubMed  CAS  Google Scholar 

  • Marin D, Kaeda JS, Andreasson C, Saunders SM, Bua M, Olavarria E, Goldman JM, Apperley JF (2005) Phase I/II trial of adding semisynthetic homoharringtonine in chronic myeloid leukemia patients who have achieved partial or complete cytogenetic response on imatinib. Cancer 103:1850–1855

    PubMed  CAS  Google Scholar 

  • Mayerhofer M, Aichberger KJ, Florian S, Krauth MT, Derdak S, Esterbauer H, Wagner O, Pickl WF, Selzer E, Deininger M, Druker BJ, Greish K, Maeda H, Sillaber C, Valent P (2004) The heme oxygenase-1-targeting compound PEG-ZnPP inhibits growth of imatinib-resistant BCR/ABL-transformed cells. Blood 104:548a (abstract no 1986)

    Google Scholar 

  • Mayerhofer M, Aichberger KJ, Florian S, Krauth MT, Hauswirth AW, Derdak S, Sperr WR, Esterbauer H, Wagner O, Marosi C, Pickl WF, Deininger M, Weisberg E, Druker BJ, Griffin JD, Sillaber C, Valent P (2005) Identification of mTOR as a novel bifunctional target in chronic myeloid leukemia: dissection of growth-inhibitory and VEGF-suppressive effects of rapamycin in leukemic cells. FASEB J, 19:960–962

    PubMed  CAS  Google Scholar 

  • McWhirter JR, Wang JY (1993) An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J 12:1533–1546

    PubMed  CAS  Google Scholar 

  • Million RP, Van Etten RA (2000) The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood 96:664–670

    PubMed  CAS  Google Scholar 

  • Mohi MG, Boulton C, Gu T.-L, Sternberg DW, Neuberg D, Griffin JD, Gilliland DG, Neel BG (2004) Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. PNAS 101:3130–3135

    PubMed  CAS  Google Scholar 

  • Molldrem JJ, Clave E, Jiang YZ, Mavroudis D, Raptis A, Hensel N, Agarwala V, Barrett AJ (1997) Cytotoxic T lymphocytes specific for a nonpolymorphic proteinase 3 peptide preferentially inhibit chronic myeloid leukemia colony-forming units. Blood 90:2529–2534

    PubMed  CAS  Google Scholar 

  • Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM, Champlin RE, Davis MM (2000) Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 6:1018–1023

    PubMed  CAS  Google Scholar 

  • Molldrem JJ, Lee PP, Kant S, Wieder E, Jiang W, Lu S, Wang C, Davis MM (2003) Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Invest 111:639–647

    PubMed  CAS  Google Scholar 

  • Nakajima A, Tauchi T, Sumi M, Bishop WR, Ohyashiki K (2003) Efficacy of SCH66336, a farnesyl transferase inhibitor, in conjunction with imatinib against BCR-ABL-positive cells. Mol Cancer Ther 2:219–224

    PubMed  CAS  Google Scholar 

  • Nguyen TT, Mohrbacher AF, Tsai YC, Groffen J, Heisterkamp N, Nichols PW, Yu MC, Lubbert M, Jones PA (2000) Quantitative measure of cabl and p15 methylation in chronic myelogenous leukemia: biological implications. Blood 95:2990–2992

    PubMed  CAS  Google Scholar 

  • Nimmanapalli R, O’Bryan E, Bhalla K (2001) Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res 61:1799–1804

    PubMed  CAS  Google Scholar 

  • Nimmanapalli R, Fuino L, Bali P, Gasparetto M, Glozak M, Tao J, Moscinski L, Smith C, Wu J, Jove R, Atadja P, Bhalla K (2003a) Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or-refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res 63:5126–5135

    PubMed  CAS  Google Scholar 

  • Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K (2003b) Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood 101:3236–3239

    PubMed  CAS  Google Scholar 

  • O’Brien S, Kantarjian H, Keating M, Beran M, Koller C, Robertson LE, Hester J, Rios MB, Andreeff M, Talpaz M (1995) Homoharringtonine therapy induces responses in patients with chronic myelogenous leukemia in late chronic phase. Blood 86:3322–3326

    PubMed  CAS  Google Scholar 

  • O’Brien S, Talpaz M, Cortes J, Shan J, Giles FJ, Faderl S, Thomas D, Garcia-Manero G, Mallard S, Beth M, Koller C, Kornblau S, Andreeff M, Murgo A, Keating M, Kantarjian HM (2002) Simultaneous homoharringtonine and interferon-alpha in the treatment of patients with chronic-phase chronic myelogenous leukemia. Cancer, 94:2024–2032

    PubMed  CAS  Google Scholar 

  • O’Brien S, Giles F, Talpaz M, Cortes J, Rios MB, Shan J, Thomas D, Andreeff M, Kornblau S, Faderl S, Garcia-Manero G, White K, Mallard S, Freireich E, Kantarjian HM (2003a) Results of triple therapy with interferon-alpha, cytarabine, and homoharringtonine, and the impact of adding imatinib to the treatment sequence in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in early chronic phase. Cancer, 98:888–893

    PubMed  CAS  Google Scholar 

  • O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T, Lechner K, Nielsen JL, Rousselot P, Reiffers J, Saglio G, Shepherd J, Simonsson B, Gratwohl A, Goldman JM, Kantarjian H, Taylor K, Verhoef G, Bolton AE, Capdeville R, Druker BJ (2003b) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronicphase chronic myeloid leukemia. N Engl J Med, 348:994–1004

    PubMed  CAS  Google Scholar 

  • Osman Y, Takahashi M, Zheng Z, Koike T, Toba K, Liu A, Furukawa T, Aoki S, Aizawa Y (1999a) Generation of bcr-abl specific cytotoxic T-lymphocytes by using dendritic cells pulsed with bcr-abl (b3a2) peptide: its applicability for donor leukocyte transfusions in marrow grafted CML patients. Leukemia, 13:166–174

    PubMed  CAS  Google Scholar 

  • Osman Y, Takahashi M, Zheng Z, Toba K, Liu A, Furukawa T, Aizawa Y, Shibata A, Koike T (1999b) Activation of autologous or HLA-identical sibling cytotoxic T lymphocytes by blood derived dendritic cells pulsed with tumor cell extracts. Oncol Rep 6:1057–1063

    PubMed  CAS  Google Scholar 

  • Ossenkoppele GJ, Stam AG, Westers TM, de Gruijl TD, Janssen JJ, van de Loosdrecht AA, Scheper RJ (2003) Vaccination of chronic myeloid leukemia patients with autologous in vitro cultured leukemic dendritic cells. Leukemia, 17:1424–1426

    PubMed  CAS  Google Scholar 

  • Pawelec G, Max H, Halder T, Bruserud O, Merl A, da Silva P, Kalbacher H (1996) BCR/ABL leukemia oncogene fusion peptides selectively bind to certain HLA-DR alleles and can be recognized by T cells found at low frequency in the repertoire of normal donors. Blood 88:2118–2124

    PubMed  CAS  Google Scholar 

  • Perkins C, Kim CN, Fang G, Bhalla KN (2000) Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-x(L). Blood 95:1014–1022

    PubMed  CAS  Google Scholar 

  • Peters DG, Hoover RR, Gerlach MJ, Koh EY, Zhang H, Choe K, Kirschmeier P, Bishop WR, Daley GQ (2001) Activity of the farnesyl protein transferase inhibitor SCH66336 against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid leukemia. Blood 97:1404–1412

    PubMed  CAS  Google Scholar 

  • Pinilla-Ibarz J, Cathcart K, Korontsvit T, Soignet S, Bocchia M, Caggiano J, Lai L, Jimenez J, Kolitz J, Scheinberg DA (2000) Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood 95:1781–1787

    PubMed  CAS  Google Scholar 

  • Plasilova M, Zivny J, Jelinek J, Neuwirtova R, Cermak J, Necas E, Andera L, Stopka T (2002) TRAIL (Apo2L) suppresses growth of primary human leukemia and myelodysplasia progenitors. Leukemia, 16:67–73

    PubMed  CAS  Google Scholar 

  • Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet, 362:469–476

    PubMed  CAS  Google Scholar 

  • Puccetti E, Guller S, Orleth A, Bruggenolte N, Hoelzer D, Ottmann OG, Ruthardt M (2000) BCR-ABL mediates arsenic trioxide-induced apoptosis independently of its aberrant kinase activity. Cancer Res, 60:3409–3413

    PubMed  CAS  Google Scholar 

  • Qazilbash MH, Wieder E, Rios R, Lu S, Kant S, Giralt S, Estey E, Thall PF, de Lima M, Couriel D, Champlin R, Komanduri K, Molldrem J (2004) Vaccination with the PR1 leukemia-associated antigen can induce complete remission in patients with myeloid leukemia. Blood 104:77a (abstract no 259)

    Google Scholar 

  • Quintas-Cardama A, Cortes J, Verstovsek S, Laddie N, Estrov Z, Kantarjian H (2005) Subcutaneous (SC) Homoharringtonine (HHT) for patients (Pts) with chronic myelogenous leukemia (CML) in chronic phase (CP) after imatinib mesylate failure. Blood 106:290b (abstract no 4839)

    Google Scholar 

  • Rahmani M, Reese E, Dai Y, Bauer C, Kramer LB, Huang M, Jove R, Dent P, Grant S, George P, Bali P, Annavarapu S, Scuto A, Fiskus W, Guo F, Sigua C, Sondarva G, Moscinski L, Atadja P, Bhalla K (2005) Cotreatment with suberanoylanilide hydroxamic acid and 17-allylamino 17-demethoxygeldanamycin synergistically induces apoptosis in Bcr-Abl+ Cells sensitive and resistant to STI571 (imatinib mesylate) in association with down-regulation of Bcr-Abl, abrogation of signal transducer and activator of transcription 5 activity, and Bax conformational change combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Mol Pharmacol, 67:1166–1176

    PubMed  CAS  Google Scholar 

  • Ravandi-Kashani F, Ridgeway J, Nishimura S, Agarwal M, Feldman L, Salvado A, Kovak MR, Hoffman R (2003) Pilot study of combination of iamtinib mesylate and Trisenox (As2O3) in patients with accelerated and blast phase CML. Blood 102:314b (abstract no 4977)

    Google Scholar 

  • Reichert A, Heisterkamp N, Daley GQ, Groffen J (2001) Treatment of Bcr/Abl-positive acute lymphoblastic leukemia in P190 transgenic mice with the farnesyl transferase inhibitor SCH66336. Blood 97:1399–1403

    PubMed  CAS  Google Scholar 

  • Reuther JY, Reuther GW, Cortez D, Pendergast AM, Baldwin AS Jr (1998) A requirement for NF-kappaB activation in Bcr-Abl-mediated transformation. Genes Dev, 12:968–981

    PubMed  CAS  Google Scholar 

  • Roman-Gomez J, Castillejo JA, Jimenez A, Cervantes F, Boque C, Hermosin L, Leon A, Granena A, Colomer D, Heiniger A, Torres A (2003) Cadherin-13, a mediator of calcium-dependent cell-cell adhesion, is silenced by methylation in chronic myeloid leukemia and correlates with pretreatment risk profile and cytogenetic response to interferon alfa. J Clin Oncol, 21:1472–1479

    PubMed  CAS  Google Scholar 

  • Rothwarf DM, Karin M (1999) The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE, 1999, RE1

    Google Scholar 

  • Santini V, Kantarjian HM, Issa JP (2001) Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med, 134:573–586

    PubMed  CAS  Google Scholar 

  • Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K, Gesbert F, Iwasaki H, Li S, Van Etten RA (2002) Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell, 1:479–492

    PubMed  CAS  Google Scholar 

  • Sawyers CL (1999) Chronic myeloid leukemia. N Engl J Med, 340:1330–1340

    PubMed  CAS  Google Scholar 

  • Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG, Schiffer CA, Talpaz M, Guilhot F, Deininger MWN, Fischer T, O’Brien SG, Stone RM, Gambacorti-Passerini CB, Russell NH, Reiffers JJ, Shea TC, Chapuis B, Coutre S, Tura S, Morra E, Larson RA, Saven A, Peschel C, Gratwohl A, Mandelli F, Ben-Am M, Gathmann I, Capdeville R, Paquette RL, Druker BJ (2002) Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 99:3530–3539

    PubMed  CAS  Google Scholar 

  • Scappini B, Onida F, Kantarjian HM, Dong L, Verstovsek S, Keating MJ, Beran M (2002) In vitro effects of STI 571-containing drug combinations on the growth of Philadelphia-positive chronic myelogenous leukemia cells. Cancer 94:2653–2662

    PubMed  CAS  Google Scholar 

  • Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M (2003) Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 101:1566–1569

    PubMed  CAS  Google Scholar 

  • Segawa H, Kimura S, Kuroda J, Sato K, Yokota A, Kawata E, Kamitsuji Y, Ashihara E, Yuasa T, Fujiyama Y, Ottmann OG, Maekawa T (2005) Zoledronate synergises with imatinib mesylate to inhibit Ph primary leukaemic cell growth. Br J Haematol 130:558–560

    PubMed  CAS  Google Scholar 

  • Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT (2000) A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60:3504–3513

    PubMed  CAS  Google Scholar 

  • Senderowicz AM, Headlee D, Stinson SF, Lush RM, Kalil N, Villalba L, Hill K, Steinberg SM, Figg WD, Tompkins A, Arbuck SG, Sausville EA (1998) Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms. J Clin Oncol 16:2986–2999

    PubMed  CAS  Google Scholar 

  • Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R, Stone RM, Nelson D, Powell BL, DeCastro CM, Ellerton J, Larson RA, Schiffer CA, Holland JF (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 20:2429–2440

    PubMed  CAS  Google Scholar 

  • Skorski T, Kanakaraj P, Nieborowska-Skorska M, Ratajczak MZ, Wen SC, Zon G, Gewirtz AM, Perussia B, Calabretta B (1995) Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 86:726–736

    PubMed  CAS  Google Scholar 

  • Smith BD, Kasamon YL, Miller CB, Chia C, Murphy K, Kowalski J, Tartakovsky I, Biedrzycki B, Jones RJ, Hege K, Levitsky HI (2005) K562/GM-CSF Vaccination reduces tumor burden, including achieving molecular remissions, in chronic myeloid leukemia (CML) patients with residual disease on imatinib mesylate (IM). Blood 106:801a (abstract no 2858)

    Google Scholar 

  • Smith DF, Whitesell L, Katsanis E (1998) Molecular chaperones: biology and prospects for pharmacological intervention. Pharmacol Rev 50:493–514

    PubMed  CAS  Google Scholar 

  • Stancato LF, Silverstein AM, Owens-Grillo JK, Chow YH, Jove R, Pratt WB (1997) The hsp90-binding antibiotic geldanamycin decreases Raf levels and epidermal growth factor signaling without disrupting formation of signaling complexes or reducing the specific enzymatic activity of Raf kinase. J Biol Chem 272:4013–4020

    PubMed  CAS  Google Scholar 

  • Suto R, Srivastava PK (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269:1585–1588

    PubMed  CAS  Google Scholar 

  • Takahashi T, Tanaka Y, Nieda M, Azuma T, Chiba S, Juji T, Shibata Y, Hirai H (2003) Dendritic cell vaccination for patients with chronic myelogenous leukemia. Leuk Res 27:795–802

    PubMed  Google Scholar 

  • Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, Guilhot F, Schiffer CA, Fischer T, Deininger MWN, Lennard AL, Hochhaus A, Ottmann OG, Gratwohl A, Baccarani M, Stone R, Tura S, Mahon F-X, Fernandes-Reese S, Gathmann I, Capdeville R, Kantarjian HM, Sawyers CL (2002) Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 99:1928–1937

    PubMed  CAS  Google Scholar 

  • Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF (2003) Histone deacetylases: unique players in shaping the epigenetic histone code. Ann NY Acad Sci 983:84–100

    PubMed  CAS  Google Scholar 

  • Timmermann S, Lehrmann H, Polesskaya A, Harel-Bellan A (2001) Histone acetylation and disease. Cell Mol Life Sci 58:728–736

    PubMed  CAS  Google Scholar 

  • Tipping AJ, Mahon FX, Zafirides G, Lagarde V, Goldman JM, Melo JV (2002) Drug responses of imatinib mesylate-resistant cells: synergism of imatinib with other chemotherapeutic drugs. Leukemia 16:2349–2357

    PubMed  CAS  Google Scholar 

  • Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391–1396

    PubMed  CAS  Google Scholar 

  • Udono H, Levey DL, Srivastava PK (1994) Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc Natl Acad Sci USA 91:3077–3081

    PubMed  CAS  Google Scholar 

  • Uno K, Inukai T, Kayagaki N, Goi K, Sato H, Nemoto A, Takahashi K, Kagami K, Yamaguchi N, Yagita H, Okumura K, Koyama-Okazaki T, Suzuki T, Sugita K, Nakazawa S (2003) TNF-related apoptosis-inducing ligand (TRAIL) frequently induces apoptosis in Philadelphia chromosome-positive leukemia cells. Blood 101:3658–3667

    PubMed  CAS  Google Scholar 

  • Verstovsek S, Kantarjian H, Manshouri T, Cortes J, Giles FJ, Rogers A, Albitar M (2002) Prognostic significance of cellular vascular endothelial growth factor expression in chronic phase chronic myeloid leukemia. Blood 99:2265–2267

    PubMed  CAS  Google Scholar 

  • Vigneri P, Wang JY (2001) Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat Med 7:228–234

    PubMed  CAS  Google Scholar 

  • Visani G, Russo D, Ottaviani E, Tosi P, Damiani D, Michelutti A, Manfroi S, Baccarani M, Tura S (1997) Effects of homoharringtonine alone and in combination with alpha interferon and cytosine arabinoside on “in vitro” growth and induction of apoptosis in chronic myeloid leukemia and normal hematopoietic progenitors. Leukemia 11:624–628

    PubMed  CAS  Google Scholar 

  • Vojtek AB, Der CJ (1998) Increasing complexity of the Ras signaling pathway. J Biol Chem 273:19925–19928

    PubMed  CAS  Google Scholar 

  • Wijermans P, Lubbert M, Verhoef G, Bosly A, Ravoet C, Andre M, Ferrant A (2000) Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 18:956–962

    PubMed  CAS  Google Scholar 

  • Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3:673–682

    PubMed  CAS  Google Scholar 

  • Wohlbold L, van der Kuip H, Miething C, Vornlocher HP, Knabbe C, Duyster J, Aulitzky WE (2003) Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571). Blood 102:2236–2239

    PubMed  CAS  Google Scholar 

  • Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331

    PubMed  CAS  Google Scholar 

  • Yinjun L, Jie J, Weilai X, Xiangming T (2004) Homoharringtonine mediates myeloid cell apoptosis via upregulation of pro-apoptotic bax and inducing caspase-3-mediated cleavage of poly(ADP-ribose) polymerase (PARP). Am J Hematol 76:199–204

    PubMed  Google Scholar 

  • Yotnda P, Firat H, Garcia-Pons F, Garcia Z, Gourru G, Vernant JP, Lemonnier FA, Leblond V, Langlade-Demoyen P (1998) Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. J Clin Invest 101:2290–2296

    PubMed  CAS  Google Scholar 

  • Yu C, Krystal G, Dent P, Grant S (2002a) Flavopiridol potentiates STI571-induced mitochondrial damage and apoptosis in BCR-ABL-positive human leukemia cells. Clin Cancer Res 8:2976–2984

    PubMed  CAS  Google Scholar 

  • Yu C, Krystal G, Varticovksi L, McKinstry R, Rahmani M, Dent P, Grant S (2002b) Pharmacologic mitogen-activated protein/extracellular signal-regulated kinase kinase/mitogen-activated protein kinase inhibitors interact synergistically with STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells. Cancer Res 62:188–199

    PubMed  CAS  Google Scholar 

  • Yu C, Rahmani M, Almenara J, Subler M, Krystal G, Conrad D, Varticovski L, Dent P, Grant S (2003) Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and-resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Res 63:2118–2126

    PubMed  CAS  Google Scholar 

  • Zamore PD (2002) Ancient pathways programmed by small RNAs. Science 296:1265–1269

    PubMed  CAS  Google Scholar 

  • Zion M, Ben-Yehuda D, Avraham A, Cohen O, Wetzler M, Melloul D, Ben-Neriah Y (1994) Progressive de novo DNA methylation at the bcr-abl locus in the course of chronic myelogenous leukemia. Proc Natl Acad Sci USA 91:10722–10726.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Quintás-Cardama, A., Kantarjian, H., Cortes, J. (2007). New Therapies for Chronic Myeloid Leukemia. In: Myeloproliferative Disorders. Hematologic Malignancies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34506-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34506-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34505-3

  • Online ISBN: 978-3-540-34506-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics