Skip to main content

Epidemic Models with Population Dispersal

  • Chapter
Mathematics for Life Science and Medicine

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2199 Accesses

Summary

The purpose of this chapter is to outline recent advances of mathematical models in the studies of epidemic diseases in heterogeneous geography. Section 4.1 presents a model with the immigration of infectives from outside the population. Section 4.2 introduces multi patches into epidemic models but assume that the population size in each patch is constant in time. One objective is to discuss conditions under which patches become synchronised. The second objective is to consider the invasion of malaria into a population distributed in distinct patches. In Sect. 4.3, a demographic structure is incorporated into the epidemic models with multi patches. The basic reproduction number of the model is established. Section 4.4 changes the mass action incidence to a standard incidence. Section 4.5 further considers the residence of individuals, which make mathematical models more accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Arino; P. van den Driessche, A multi-city epidemic model. Math. Popul. Stud. 10 (2003a), 175–193.

    Article  MathSciNet  MATH  Google Scholar 

  2. Arino, J. and P. van den Driessche (2003b), The basic reproduction number in a multi-city compartmental epidemic model. Positive systems (Rome), 135–142, Lecture Notes in Control and Inform. Sci., 294, Springer, Berlin.

    Google Scholar 

  3. Brauer, F. and P. van den Driessche (2001), Models for transmission of disease with immigration of infectives. Math. Biosci, 171, 143–154.

    Article  MathSciNet  MATH  Google Scholar 

  4. Britton, N. F. (2003), Essential Mathematical Biology. Springer-Verlag London, Ltd., London.

    MATH  Google Scholar 

  5. Cooke, K. L. and P. van den Driessche (1996), Analysis of an SEIRS epidemic model with two delays. J. Math. Biol. 35, 240–260.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cooke, K., P. van den Driessche and X. Zou (1999), Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 39, 332–352.

    Article  MathSciNet  MATH  Google Scholar 

  7. Diekmann, O., J.A.P. Heesterbeek and J.A.J. Metz (1990), On the definition and the computation of the basic reproduction ratio R 0 in the models for infectious disease in heterogeneous populations. J. Math. Biol. 28, 365–382.

    Article  MathSciNet  MATH  Google Scholar 

  8. Diekmann, O. and J. A. P. Heesterbeek (2000), Mathematical epidemiology of infectious diseases. Model building, analysis and interpretation. Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd., Chichester.

    Google Scholar 

  9. Feng, Z. and H.R. Thieme (2000a), Endemic modls with arbitrary distributed periods of infection I: fundamental properties of the model. SIAM J.Appl. Math. 61, 803–833.

    Article  MathSciNet  MATH  Google Scholar 

  10. Feng, Z. and H.R. Thieme (2000b), Endemic modls with arbitrary distributed periods of infection II: fast disease dynamics and permanent recovery. SIAM J.Appl. Math. 61, 983–1012.

    Article  MathSciNet  MATH  Google Scholar 

  11. Freedman, H. I. and P. Waltman (1984), Persistence in models of three interacting predator-prey populations. Math. Biosci. 68, 213–231.

    Article  MathSciNet  MATH  Google Scholar 

  12. Fulford, G. R., M. G. Roberts and J. A. P. Heesterbeek (2002), The metapopulation dynamics of an infectious disease: tuberculosis in possums, Theoretical Population Biology. 61, 15–29.

    Article  MATH  Google Scholar 

  13. Gyllenberg, M. and G. F. Webb (1990), A nonlinear structured population model of tumor growth with quiescence. J. Math. Biol. 28, 671–694.

    Article  MathSciNet  MATH  Google Scholar 

  14. Grenfell, B. and J. Harwood (1997), (Meta)population dynamics of infectious diseases. Trends in Ecology and Evolution. 12, 395–399.

    Article  Google Scholar 

  15. Han, L., Z. Ma, S. Tan (2003), An SIRS epidemic model of two competitive species. Math. Comput. Modelling 37, 87–108.

    Article  MathSciNet  MATH  Google Scholar 

  16. Hethcote, H.W. (2000), The mathematics of infectious diseases. SIAM Review. 42, 599–653.

    Article  MathSciNet  MATH  Google Scholar 

  17. Hanski, I.(1999), Metapopulation ecology. Oxford University Pree.

    Google Scholar 

  18. Inaba, H. (1990), Threshold and stability results for an age-structured epidemic model. J. Math. Biol. 28, 411–434.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. J. Keeling and C. A. Gilligan (2000), Metapopulation dynamics of bubonic plague. Nature. 407, 903–906.

    Article  Google Scholar 

  20. Lajmanovich and Yorke (1976), A deterministic model for gonorrhea in a non-homogeneous population. Math. Biosci. 28, 221–236.

    Article  MathSciNet  MATH  Google Scholar 

  21. Levin, S. A. (1974), Dispersion and population interactions. Amer. Natur. 108, 207–228.

    Article  Google Scholar 

  22. Liu, W. M., S. A. Levin and Y. Iwasa (1986), Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol. 23, 187–204.

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, W. M., H. W. Hethcote and S. A. Levin (1987), Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol. 25, 359–380.

    Article  MathSciNet  MATH  Google Scholar 

  24. Lloyd, A. L. and R. M. May (1996), Spatial heterogeneity in epidemic models. J. Theor. Biol. 91, 1–11.

    Article  Google Scholar 

  25. Lloyd, A. L. and V. A. A. Jansen (2004), Spatiotemporal dynamics of epidemics: synchrony in metapopulation models. Math. Biosci. 188, 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  26. Lu, Y. and Y. Takeuchi (1992), Permanence and global stability for cooperative Lotka-Volterra diffusion systems. Nonlinear Anal. 19, 963–975.

    Article  MathSciNet  MATH  Google Scholar 

  27. Ma, W., Y. Takeuchi, T. Hara and E. Beretta (2002), Permanence of an SIR epidemic model with distributed time delays. Tohoku Math. J. 54, 581–591.

    Article  MathSciNet  MATH  Google Scholar 

  28. McCallum, H., N. Barlow and J. Hone (2001), How should pathogen transmission be modelled?. Trends Ecol. Evol. 16, 295–300.

    Article  Google Scholar 

  29. Murray, J. D. (1989), Mathematical biology. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  30. Okubo, A. and S. A. Levin (2001), Diffusion and ecological problems: modern perspectives. Second edition. Interdisciplinary Applied Mathematics, 14. Springer-Verlag, New York.

    Google Scholar 

  31. Rodríguez, D. J. and L. Torres-Sorando (2001), Models of infectious diseases in spatially heterogenous environments. Bull. Math. Biol. 63, 547–571.

    Article  Google Scholar 

  32. Ruan, S. and W. Wang (2003), Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Differential Equations 188, 135–163.

    Article  MathSciNet  MATH  Google Scholar 

  33. Sattenspiel, L. and K. Dietz (1995), A structured epidemic model incorporating geographic mobility among regions. Math. Biosci. 128, 71–91.

    Article  MATH  Google Scholar 

  34. Sattenspiel, L. and D. Herring (2003), Simulating the effect of quarantine on the spread of the 1918–19 flu in central Canada. Bull. Math. Biol. 65, 1–26.

    Article  Google Scholar 

  35. Smith, H. L. and P. Waltman (1995), The theory of the Chemostat, Cambridge University Press.

    Google Scholar 

  36. Smith, H. L. (1995),Monotone Dynamical Systems. An introduction to the theory of competitive and cooperative systems, Math Surveys and Monographs 41, American Mathematical Society, Providence, RI.

    MATH  Google Scholar 

  37. Takeuchi, Y. (1986), Global stability in generalized Lotka-Volterra diffusion systems. J. Math. Anal. Appl. 116, 209–221.

    Article  MathSciNet  MATH  Google Scholar 

  38. Takeuchi, Y., Wanbiao Ma and E. Beretta (2000), Global asymptotic properties of a delay SIR epidemic model with finite incubation times. Nonlinear Anal. 42, 931–947.

    Article  MathSciNet  Google Scholar 

  39. Thieme, H. R. (1993), Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J. Math. Anal., 24, 407–435.

    Article  MathSciNet  MATH  Google Scholar 

  40. Van den Driessche, P. and J. Watmough (2000), A simple SIS epidemic model with a backward bifurcation. J. Math. Biol. 40, 525–540.

    Article  MathSciNet  MATH  Google Scholar 

  41. Van den Driessche, P. and J. Watmough (2002), Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29–48.

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, W. (2002a), Global behavior of an SEIRS epidemic model with time delays. Appl. Math. Lett. 15, 423–428.

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, W. (2004), Population Dispersal and Disease Spread. Discrete and Continuous Dynamical Systems Series B. 4, 797–804.

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, W. and Z. Ma (2002b), Global dynamics of an epidemic model with time delay. Nonlinear Anal. Real World Appl. 3, 365–373.

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, W. and G. Mulone (2003), Threshold of disease transmission on a patch environment. J. Math. Anal. Appl. 285, 321–335.

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, W. and S. Ruan (2004a), Simulating the SARS outbreak in Beijing with limited data. J. theor. Biol. 227, 369–379.

    Article  MathSciNet  Google Scholar 

  47. Wang, W. and S. Ruan (2004b), Bifurcation in an epidemic model with constant removal rate of the infectives. J. Math. Anal. Appl. 291, 775–793.

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, W. and X.-Q. Zhao (2004), An epidemic model in a patchy environment, Math. Biosci. 190, 39–69.

    Article  MathSciNet  Google Scholar 

  49. Xiao, Y. and L. Chen (2001), Modeling and analysis of a predator-prey model with disease in the prey. Math. Biosci. 171, 59–82.

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhao, X.-Q. and Z.-J. Jing (1996), Global asymptotic behavior in some cooperative systems of functional differential equations, Canadian Applied Mathematics Quarterly 4, 421–444.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, W. (2007). Epidemic Models with Population Dispersal. In: Takeuchi, Y., Iwasa, Y., Sato, K. (eds) Mathematics for Life Science and Medicine. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34426-1_4

Download citation

Publish with us

Policies and ethics