Skip to main content

Methods for Implementing Antibiotic Control in the Intensive Care Unit

  • Chapter
Book cover Infectious Diseases in Critical Care
  • 2096 Accesses

Abstract

In recent decades, multiresistant pathogens have become established in our institutions, increasing mortality, morbidity, patient length of stay and related economic and social costs [1, 2]. Paradoxically, antibiotics constitute an important part of both the problem and the solution of resistance emergence and development. According to a range of multicenter studies, ICUs are the setting in which antimicrobials are most frequently prescribed. Between 33% and 62.3% of patients admitted to an ICU receive one or more antibiotics [3, 4], and although a causative association is difficult to demonstrate, antimicrobial use is clearly related to the development of antimicrobial resistance [5]. Unfortunately, reducing total antibiotic use in hospitals is difficult to accomplish and is not always efficient [6] in improving antibiotic susceptibilities. In recent years efforts have focused on rationalizing management of the available antimicrobial armory rather than on reducing its total use [7, 8]. Many interventions have been proposed and evaluated to find the best strategy to optimize antibiotic prescription and to reduce resistance rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rello J, Rue M, Jubert P, et al. (1997) Survival in patients with nosocomial pneumonia: impact of the severity of illness and the etiologic agent. Crit Care Med 25:1862–1867

    Article  CAS  PubMed  Google Scholar 

  2. Carmeli Y, Troillet N, Karchmer AW, et al. (1999) Health and economic outcomes of antibiotic resistance in Pseudomonas aeruginosa. Arch Intern Med 159:1127–1132

    Article  CAS  PubMed  Google Scholar 

  3. Vincent JL, Bihari DS, Suer PM, et al. (1995) The prevalence of nosocomial infection in intensive care units in Europe. Results of the European prevalence of infection in intensive care (EPIC) study. JAMA 274:639–644

    Article  CAS  PubMed  Google Scholar 

  4. Vaque J, Rosello J, Trilla A, et al. (1996) Nosocomial infections in Spain: results of 5 nationwide serial prevalence surveys (EPINE Project, 1990 to 1994). Infect Control Hosp Epidemiol 17:293–297

    Article  CAS  PubMed  Google Scholar 

  5. McGowan JE Jr (1987) Is antimicrobial resistance in hospital microorganisms related to antibiotic use? Bull NY Acad Med 63:253–268

    Google Scholar 

  6. Cook PP, Catrou PG, Christie JD, et al. (2004) Reduction in broad spectrum antibiotic use is associated with no improvement in hospital antibiogram. J Antimicr Chemother 53:853–859

    Article  CAS  Google Scholar 

  7. Society for Healthcare Epidemiology of America and Infectious Diseases Society of America Joint Committee on the Prevention of Antimicrobial Resistance (1997) Guidelines for the Prevention of Antimicrobial Resistance in Hospitals. Clin Infect Dis 25:584–589

    Article  Google Scholar 

  8. Goldmann DA, Weinstein R, Wenzel P, et al. (1996) Strategies to prevent and control the emergence and spread of antimicrobial-resistant microorganisms in hospital. A challenge to hospital leadership. JAMA 275:234–240

    Article  CAS  PubMed  Google Scholar 

  9. Rello J, Gallego M, Mariscal D, et al. (1997) The value of routine microbiological investigation in ventilator-associated pneumonia. Am J Respir Crit Care Med 156:196–200

    CAS  PubMed  Google Scholar 

  10. Rello J, Ollendorf D, Vera-Llonch M, et al. (2002) Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Chest 122:2115–2121

    Article  PubMed  Google Scholar 

  11. Wunderink R (2004) A long and winding road. Crit Care Med 34:1077–1079

    Article  Google Scholar 

  12. Rello J, Jubert J, Valles J (1996) Evaluation of outcome in intubated patients with pneumonia due to Pseudomonas aeruginosa. Clin Infect Dis 23:973–978

    CAS  PubMed  Google Scholar 

  13. Baddour LM, Yu VL, Lugman KP, et al. (2004) Combination antibiotic therapy lowers mortality among severely ill patients with pneumococcal bacteraemia. Am J Respir Crit Care Med 170:440–444

    Article  PubMed  Google Scholar 

  14. Rello J, Diaz E, Bodi M, et al. (2003) Associations between empirical antimicrobial therapy at the hospital and mortality in patients with severe community-acquired pneumonia. Intensive Care Med 28:1030–1035

    Google Scholar 

  15. Pharman MJ (2005) Immunomodulatory effects of antimicrobials in the therapy of respiratory tract infections. Curr Opin Infect Dis 18:125–131

    Article  Google Scholar 

  16. Pea F, Pierluigi V, Furlanut M (2005) Antimicrobial therapy in critically ill patients. A review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability. Clin Pharmacokinet 44:1009–1034

    Article  CAS  PubMed  Google Scholar 

  17. Fry DE (1996) The importance of antibiotic pharmacokinetics in critical illness. Am J Surg 172(Suppl 6A):20S–25S

    Article  CAS  PubMed  Google Scholar 

  18. Pinder M, Bellomo R, Lipman J (2002) Pharmacological principles of antibiotic prescription in the critically ill. Anaesth Intensive Care 30:134–144

    CAS  PubMed  Google Scholar 

  19. Lugo G, Castañeda-Hernández G (1997) Relationship between hemodynamic and vital support measures and pharmacokinetics variability of amikacin in critically ill patient with sepsis. Crit Care Med 25:806–811

    Article  CAS  PubMed  Google Scholar 

  20. Buijk SE, Mouton JW, Gyssens IC, et al. (2002) Experience with a once daily dosing program of aminoglycosides in critically ill patients. Intensive Care Med 28:936–942

    Article  CAS  PubMed  Google Scholar 

  21. Olsen KM, Rudis MI, Rebuck JA, et al. (2004) Effect of once-daily dosing vs multiple daily dosing of tobramycin on enzyme markers of nephrotoxicity. Crit Care Med 32:1678–1682

    Article  CAS  PubMed  Google Scholar 

  22. Gomez CMH, Cordingly JJ, Palazzo MGA (1999) Altered pharmacokinetics of ceftazidime in critically ill patients. Antimicrog Agents Chemother 43:1798–1802

    CAS  Google Scholar 

  23. Wysocki M, Thomas F, Wolff MA, et al. (1995) Comparison of continuous with discontinuous intravenous infusion of vancomycin in severe MRSA infection. J Antimicrob Chemother 35:352–354

    Article  CAS  PubMed  Google Scholar 

  24. Cruciani M, Gatti G, Lazzarini L et al. (1996) Penetration of vancomycin into human lung tissue. J Antimicrob Chemother 38:865–869

    Article  CAS  PubMed  Google Scholar 

  25. Rello J, Torres A, Ricart M, et al. (1994) Ventilator-associated pneumonia by Staphylococcus aureus. Comparison of methicillin-resistant and methicillin-sensitive episodes. Am J Respir Crit Care Med 150:1545–1549

    CAS  PubMed  Google Scholar 

  26. Meehan TP, Fine MJ, Krumholz HM, et al. (1997) Quality of care, process and outcome in elderly patients with pneumonia. JAMA 278:2080–2084

    Article  CAS  PubMed  Google Scholar 

  27. Chastre J, Wolff M, Fagon JY, et al. (2003) Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults. JAMA 290:2588–2598

    Article  CAS  PubMed  Google Scholar 

  28. Evans RS, Pestronick SL, Classen DC, et al. (1998) A computer-assisted management program for antibiotics and other antiinfective agents. N Engl J Med 338:232–238

    Article  CAS  PubMed  Google Scholar 

  29. Apisarnthanarak A, Danchaivijitr S, Khawacharoenporn T, et al. (2006) Effectiveness of education and an antibioticcontrol program in a tertiary care hospital in Thailand. Clin Infect Dis 42:768–775

    Article  PubMed  Google Scholar 

  30. Bailey TC, Ritchie DJ, McMullin ST, et al. (1997) A randomized, prospective evaluation of an interventional program to discontinue intravenous antibiotics at two tertiary care teaching institutions. Pharmacotherapy 17:277–281

    CAS  PubMed  Google Scholar 

  31. Ibrahim EH, Ward S, Sherman G, et al. (2001) Experience with a clinical guideline for the treatment of ventilator-associated pneumonia. Crit Care Med 29:1109–1115

    Article  CAS  PubMed  Google Scholar 

  32. Niederman MS, Mandel LA, Anzueto A, et al. (2001) Guidelines for the management of adults with community-acquired pneumonia. Diagnosis, assessment of severity, antimicrobial therapy and prevention. Am J Respir Crit Care Med 163:1730–1754

    CAS  PubMed  Google Scholar 

  33. Guidelines for the Management of Adults with Hospital-Acquired, Ventilator-Associated and Healthcare-Associated Pneumonia (2005) Am J Respir Crit Care Med 388–416

    Google Scholar 

  34. Bodi M, Rodríguez A, Sole-Violan, et al. (2005) Antibiotic prescription for community-acquired pneumonia in the intensive care unit. Impact of adherence to IDSA guidelines on outcome. Clin Infect Dis 41:1709–1716

    Article  CAS  PubMed  Google Scholar 

  35. Barclay LP, Hatton RC, Doering PL, et al. (1995) Physicians’ perception and knowledge of drug costs: Results of a survey. Formulary 22:231–233

    Google Scholar 

  36. Ellrodt AG, Conner L, Riedinger M, et al. (1995) Measuring and improving physician compliance with clinical practice guidelines: A controlled interventional trial. Ann Intern Med 122:277–282

    CAS  PubMed  Google Scholar 

  37. Sandiumenge A, Diaz E, Bodi M, et al. (2003) Therapy of ventilator-associated pneumonia. A patient based approach based on the ten rules of “The Tarragona Strategy”. Intensive Care Med 29:876–88

    PubMed  Google Scholar 

  38. McGowan JE Jr, Gerdin DN (1996) Does antibiotic restriction prevent resistance? New Horizons 4:370–376

    PubMed  Google Scholar 

  39. Rice LB, Eckstein EC, DeVente J, et al. (1996) Ceftazidime-resistant Klebsiella pneumoniae isolates recovered at the Cleveland Department of Veterans Affairs Medical Center. Clin Infect Dis 23:118–124

    CAS  PubMed  Google Scholar 

  40. Landman D, Chockalingam M, Quale JM (1999) Reduction in the incidence of methicillin-resistant Staphylococcus aureus and ceftazidime-resistant Klebsiella pneumoniae following changes in a hospital antibiotic formulary. Clin Infect Dis 28:1062–1066

    Article  CAS  PubMed  Google Scholar 

  41. White AC Jr, Atmar RL, Wilson J, et al. (1997) Effects of requiring prior authorization for selected antimicrobials: Expenditures, susceptibilities, and clinical outcomes. Clin Infect Dis 25:230–239

    Article  PubMed  Google Scholar 

  42. Burke JP (1998) Antibiotic resistance-squeezing the Balloon? JAMA 280:1270–1271

    Article  CAS  PubMed  Google Scholar 

  43. Rifenburg RP, Paladino JA, Hanson SC, et al. (1996) Benchmark analysis of strategies hospitals use to control antimicrobial expenditures. Am J Health-System Pharmacy 53:2054–2062

    CAS  Google Scholar 

  44. Rahal JJ, Urban C, Horn D, et al. (1998) Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA:1233–1237

    Google Scholar 

  45. May AK, Melton SM, McGwin G, et al. (2000) Reduction of vancomycin-resistant enterococcal infections by limitation of broad-spectrum cephalosporin use in trauma and burn intensive care unit. Shock 14:259–264

    Article  CAS  PubMed  Google Scholar 

  46. Quale J, Lnadman D, Saurina G, et al. (1996)Manipulation of a hospital antimicrobial formulary to control an outbreak of vancomycin-resistant enterococci. Clin Infect Dis 23:1020–1025

    CAS  PubMed  Google Scholar 

  47. Ma MY, Godstein EJ, Friedman MH, et al. (1983) Resistance of gram-negative bacilli as related to hospital use of antimicrobial agents. Antimicrob Agents Chemother 24:347–352

    CAS  PubMed  Google Scholar 

  48. Gerding DN, Larson TA, Hughes RA, et al. (1991) Aminoglycoside resistance and aminoglycoside usage: Ten years of experience in one hospital. Antimicrob Agents Chemother 31:1284–1290

    Google Scholar 

  49. Gruson D, Hibert G, Vargas F, et al. (2000) Rotation and restricted use of antibiotics in a medical intensive care unit: Impact on the incidence of ventilator-associated pneumonia caused by antibiotic-resistant Gramnegative bacteria. Am J Respir Crit Care Med 162:837–843

    CAS  PubMed  Google Scholar 

  50. Bradley SJ, Wilson AL, Allen MC, et al. (1999) The control of hyperendemic glycopeptide-resistant Enterococcus spp. on a haematology unit by changing antibiotic usage. J Antimicrob Chemother 43:261–64

    Article  CAS  PubMed  Google Scholar 

  51. van Loon H, Vriens M, Fluit A, et al. (2005) Antibiotic rotation and development of Gram-negative antibiotic resistance. Am J Respir Crit Care Med 171:480–487

    Article  PubMed  Google Scholar 

  52. Moss W, Beers C, Johnson E, et al. (2002) Pilot study of antibiotic cycling in a pediatric intensive care unit. Crit Care Med 30:1877–1882

    Article  PubMed  Google Scholar 

  53. Toltzis P, Dul M, Hoyen C, et al. (2002) The effect of antibiotic rotation on colonization with antibiotic-resistant bacilli in a Neonatal Intensive Care Unit. Pediatrics 110:707–711

    Article  PubMed  Google Scholar 

  54. Warren D, Hill G, Merz L, et al. (2004) Cycling empirical antimicrobial agents to prevent emergence of antimicrobial-resistant Gram-negative bacteria among intensive care unit patients. Crit Car Med 32:2450–2456

    Article  CAS  Google Scholar 

  55. Bruno-Murtha L, Brusch J, Bor D, et al. (2005) Apilot study of antibiotic cycling in the community hospital setting. Infect Control Hospital Epidemiol 26:81–87

    Article  Google Scholar 

  56. Kollef MH, Ward S, Sherman G, et al. (2000) Inadequate treatment of nosocomial infections is associated with certain empiric antibiotic choices. Crit Care Med 28:3456–3464

    Article  CAS  PubMed  Google Scholar 

  57. Mertz L, Warren D, Kollef M, et al. (2004) Effects on antibiotic cycling program on antibiotic prescribing practices in an Intensive Care Unit. Antimicrob Agents Chemother 48:2861–2865

    Article  Google Scholar 

  58. Gruson D, Gilles H, Vargas F, et al. (2003) Strategy of antibiotic rotation: Long-term effect on incidence and susceptibilities of Gram-negative bacilli responsible for ventilator-associated pneumonia. Crit Care Med 31:1908–1914

    Article  PubMed  Google Scholar 

  59. Kollef MH, Vlasnik J, Shrpless L, et al. (1997) Scheduled change of antibiotic classes. Astrategy to decrease the incidence of ventilator-associated pneumonia. Am J Respir Crit Care Med 156:1040–1048

    CAS  PubMed  Google Scholar 

  60. Puzniak LA, Mayfield J, Leet T, et al. (2001) Acquisition of vancomycin-resistant enterococci during scheduled antimicrobial rotation in an Intensive Care Unit. Clin Infect Dis 33:151–157

    Article  CAS  PubMed  Google Scholar 

  61. Raymond DP, Pelletier SJ, Crabtree TD, et al. (2001) Impact of a rotating empiric antibiotic schedule on infectious mortality in an intensive care unit. Crit Care Med 29:1101–1108

    Article  CAS  PubMed  Google Scholar 

  62. Lipstich M, Bergstrom C, Levin B (2000) The epidemiology of antibiotic resistance in hospitals: Paradoxes and prescriptions. Proc Natl Acad Sci USA 1938–43

    Google Scholar 

  63. Bonten M, Austin D, Lipsitch M (2001) Understanding the spread of antibiotic resistant pathogens in hospitals: mathematical models as tools for control. CID 33:1739–1746

    Article  CAS  Google Scholar 

  64. Kollef M (2001) Is there a role for antibiotic cycling in the intensive care unit? Crit Care Med 29:135–142

    Article  Google Scholar 

  65. Masterson R (2005) Antibiotic cycling: more than it might seem? J Antimicrob Chemother 55:1–6

    Article  Google Scholar 

  66. Bonhoeffer S, Lipstich M, Levin BR (1997) Evaluating treatment protocols to prevent antibiotic resistance. Proc Natl Acad Sci USA 94:12106–12111

    Article  CAS  PubMed  Google Scholar 

  67. Bergstrom CT, Lo M, Lipstich C (2004) Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals. Proc Natl Acad Sci USA 101:13101–13102

    Article  Google Scholar 

  68. Sandiumenge A, Diaz E, Rodríguez A, et al. (2006) Impact of diversity of antibiotic use on development of antimicrobial resistance. J Antimicrob Chemother 57:1197

    Article  CAS  PubMed  Google Scholar 

  69. Martinez JA, Nicolas JM, Marco F, et al. (2005) Comparison of antimicrobial cycling and mixing in two medical intensive care units. Crit Care Med 34:329–335

    Article  Google Scholar 

  70. Levin B, Bonten M (2004) Cycling antibiotics may not be good for your health. Proc Natl Acad Sci USA 101:13101–13102

    Article  CAS  PubMed  Google Scholar 

  71. Luna CM, Vujacich P, Niderman MS, et al. (1997) Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 111:676–685

    Article  CAS  PubMed  Google Scholar 

  72. Singh N, Rogers P, Atwood CW, et al. (2000) Short course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. Am J Respir Crit Care Med 162:505–511

    CAS  PubMed  Google Scholar 

  73. Rello J, Vidaur L, Sandiumenge A, et al. (2004) De-escalation therapy in ventilator-associated pneumonia. Crit Care Med 32:2183–2189

    PubMed  Google Scholar 

  74. Bochud PY, Bonten M, Marchetti O (2004) Antimicrobial therapy for patients with severe sepsis and septic shock: and evidence-based review. Crit Care Med 32:s495–512

    Article  CAS  PubMed  Google Scholar 

  75. Gould IM (1999) A review of the role of antibiotic policies in the control of antibiotic resistance. J Antimicrob Chemother 43:459–465

    Article  CAS  PubMed  Google Scholar 

  76. Sandiumenge A, Rello J (2003) Cyclic rotation of antibiotics. Is all that glitters gold? Enferm Infecc Microbiol Clin 21:93–100

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sandiumenge, A. (2007). Methods for Implementing Antibiotic Control in the Intensive Care Unit. In: Rello, J., Kollef, M., Díaz, E., Rodríguez, A. (eds) Infectious Diseases in Critical Care. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34406-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34406-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34405-6

  • Online ISBN: 978-3-540-34406-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics