Skip to main content

Monographs of 99mTc Pharmaceuticals

  • Chapter
Technetium-99m Pharmaceuticals

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  • Ahlgren L, Ivarsson S, Johansson L, Mattsson S, Nosslin B (1985) Excretion of radionuclides in human breast milk after administration of radiopharmaceuticals. J Nucl Med 26:1085–1090

    PubMed  CAS  Google Scholar 

  • Ancri D, Lonchampt M, Basset J (1977) The effect of tin on the tissue distribution of Tc-99m sodium pertechnetate. Radiology 124:445–450

    PubMed  CAS  Google Scholar 

  • Andros G, Harper PV, Lathrop KA, McCardle RJ (1965) Pertechnetate-99m localization in man with application to thyroid scanning and the study of thyroid physiology. J Clin Endocrinol Metab 25:1067–1076

    PubMed  CAS  Google Scholar 

  • Callahan RJ, Froelich JW, McKusick KA, Leppo J, Strauss WH (1982) A modified method for the in vivo labeling of red blood cells with Tc-99m: concise communication. J Nucl Med 23:315–318

    PubMed  CAS  Google Scholar 

  • Council of Europe (2005 a) Sodium pertechnetate Tc-99m injection (fission), monograph 124. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-Ruffine

    Google Scholar 

  • Council of Europe (2005b) Sodium pertechnetate Tc-99m injection, monograph 283. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-Ruffine

    Google Scholar 

  • Council of Europe (2004) Preparations for parenteral use, monograph 520. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-Ruffine

    Google Scholar 

  • Dayton DA, Maher FT, Elveback LR (1969) Renal clearance of technetium (99mTc) as pertechnetate. Mayo Clin Proc 44:549–551

    PubMed  CAS  Google Scholar 

  • Hammermaier A, Reich E, Bögl W (1986) Chemical, radiochemical, and radionuclidic purity of eluates from different commercial fission 99Mo/99mTc-generators. Eur J Nucl Med 12:41–46

    PubMed  CAS  Google Scholar 

  • Harper PV, Beck R, Charleston D, Lathrop KA (1964) Optimization of scanning method using 99mTc. Nucleonics 22:50–54

    CAS  Google Scholar 

  • Harper PV, Lathrop KA, Gottschalk A (1966) Pharmacodynamics of some technetium-99m preparations. In: Andrews GA, Knisely RM, Wagner HN Jr (eds) Radioactive Pharmaceuticals. AEC Symposium Series Conf 651111 1966, pp 335–357

    Google Scholar 

  • Hays MT (1973) 99mTc-pertechnetate transport in man: absorption after subcutaneous and oral administration; secretion into saliva and gastric juice. J Nucl Med 14:331–335

    PubMed  CAS  Google Scholar 

  • Hays MT, Berman M (1977) Pertechnetate distribution in man after intravenous infusion: a compartmental model. J Nucl Med 18:898–904

    PubMed  CAS  Google Scholar 

  • Hladik III WB, Ponto JA, Lentle BC, Laven DL (1987) Iatrogenic alterations in the biodistribution of radiotracers as a result of drug therapy: reported instances. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 189–219

    Google Scholar 

  • International Commission on Radiological Protection (1987a) Pertechnetate. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol. 18, no. 1–4. Pergamon, Oxford, pp 197–200

    Google Scholar 

  • International Commission on Radiological Protection (1987b) Technetium-labelled erythrocytes. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol. 18, no. 1–4. Pergamon, Oxford, pp 209–210

    Google Scholar 

  • Jhingram SG, Johnson PC (1973) Radionuclide angiography in the diagnosis of cerebrovascular disease. J Nucl Med 14:265–268

    Google Scholar 

  • Johannsen B, Narasimhan DVS eds (1992) Preparation of kits for 99mTc-radiopharmaceuticals. International Atomic Energy Agency: IAEA-TECDOC-649

    Google Scholar 

  • Kusic Z, Becker DV, Saenger EL, Paras P, Gartside P, Wessler T, Spaventi S (1990) Comparison of technetium-99m and iodine-123 imaging of thyroid nodules: correlation with pathological findings. J Nucl Med 31:393–399

    PubMed  CAS  Google Scholar 

  • Lin SM, Winchell HS (1972) A “kit” method for the preparation of a technetium-tin(II) colloid and a study of its properties. J Nucl Med 13:58–65

    PubMed  CAS  Google Scholar 

  • Lin SM, Winchell HS, Shipley BA (1971) Use of Fe(II) or Sn(II) alone for technetium labelling of albumin. J Nucl Med 12:204–211

    PubMed  CAS  Google Scholar 

  • Loberg MD (1979) Radiotracer distribution by active transport: the implications of nonlinear kinetics. In: Colombetti LG (ed) Principles of radiopharmacology, vol. III. CRC Press, Boca Raton, pp 43–59

    Google Scholar 

  • McAfee JG, Fueger GF, Stern HS, Wagner Jr, HN, Migita T (1964) 99mTc-pertechnetate for brain scanning. J Nucl Med 5:811–827

    PubMed  CAS  Google Scholar 

  • Montelibano EB, Ford DR, Sayle BA (1979) Altered Tc-99m pertechnetate distribution in a thyroid scan after Tc-99m pyrophosphate administration. Clin Nucl Med 4:277–278

    PubMed  CAS  Google Scholar 

  • Oldendorf WH, Sisson WB, Iisaka Y (1970) Compartmental redistribution of 99mTc-pertechnetate in the presence of perchlorate ion and its relation to plasma protein binding. J Nucl Med 11:85–88

    PubMed  CAS  Google Scholar 

  • Porter WC, Dees SM, Freitas JE, Dworkin HJ (1983) Acid-citrate-dextrose compared with heparin in the preparation of in vivo/in vitro technetium-99m red blood cells. J Nucl Med 24:383–387

    PubMed  CAS  Google Scholar 

  • Prince JR, Bancroft S, Dukstein WG (1980) Pharmacokinetics of pertechnetate administered after pretreatment with 400 mg of potassium perchlorate: concise communication. J Nucl Med 21:763–766

    PubMed  CAS  Google Scholar 

  • Quinn JL (1965) 99mTc-pertechnetate for brain scanning. Radiology 84:354–355

    PubMed  Google Scholar 

  • Steigman J, Eckelman WC (1992) The chemistry of technetium in medicine. Nuclear Science Series, NAS-NS-3204 National Academy Press, Washington, D.C.

    Google Scholar 

  • Steigman J, Richards P (1974) Chemistry of technetium 99m. Sem Nucl Med 4:269–279

    CAS  Google Scholar 

  • Steigman J, Meinken G, Richards P (1975) The reduction of pertechnetate-99 by stannous chloride-I. The stoichiometry of the reaction in HC1, in a citrate buffer and in a DTPA buffer. Int J Appl Radiat Isot 26:601–609

    CAS  Google Scholar 

  • United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc-99m pertechnetate injection (sodium). United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1861

    Google Scholar 

  • Welch MJ, Adatepe M, Potchen EJ (1969) An analysis of technetium (99mTcO 4 ) kinetics: the effect of perchlorate and iodide pretreatment. Int J Appl Radiat Isot 20:437–445

    PubMed  CAS  Google Scholar 

  • Wolff J, Maurey JR (1962) Thyroid iodide transport. III. Comparison of iodide with anions of periodic group VIIA. Biochim Biophys Acta 57:422–426

    PubMed  CAS  Google Scholar 

References

  • Benjamin PP (1969) A rapid and efficient method of preparing 99mTc-human serum albumin: its clinical applications. Int J Appl Radiat Isot 20: 187–194

    PubMed  CAS  Google Scholar 

  • Benjamin PP, Rejali A, Friedell H (1970) Electrolytic complexation of 99mTc at constant current: its application in nuclear medicine. J Nucl Med 11:147–154

    PubMed  CAS  Google Scholar 

  • Berger HJ, Matthay RA, Pytlik L, Gottschalk A, Zaret BL (1979) First-pass radionuclide assessment of right and left ventricular performance in patients with cardiac and pulmonary disease. Semin Nucl Med 9:275–295

    PubMed  CAS  Google Scholar 

  • Callahan RJ, McKusick KA, Lamson III M, Castronovo FP, Potsaid MS (1976) Technetium-99m-human serum albumin: Evaluation of a commercially produced kit. J Nucl Med 17:47–49

    PubMed  CAS  Google Scholar 

  • Council of Europe (1992) Guide for the preparation, use and quality assurance of blood components. Council of Europe, Strasbourg

    Google Scholar 

  • Council of Europe (2004a) Human albumin injection, monograph 255. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-Ruffine

    Google Scholar 

  • Council of Europe (2004b) Human plasma for separation, monograph 853. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-Ruffine

    Google Scholar 

  • Council of Europe (2005) Technetium 99mTc albumin injection. European pharmacopeia 5.0, monograph 640. Council of Europe, Maisonneuve, Sainte-Ruffine

    Google Scholar 

  • Deutsch ME, Redmond ML (1972) Unitary freeze-dried kits for preparation of technetium-labeled human serum albumin. J Nucl Med 13 (Abstr):426–427

    Google Scholar 

  • Dworkin HJ, Gutkowski RF (1971) Rapid closed system production of 99mTc-albumin using electrolysis. J Nucl Med 12:562–565

    PubMed  CAS  Google Scholar 

  • Eckelman WC, Meinken G, Richards P (1971) 99mTc-Human serum albumin. J Nucl Med 12:707–710

    PubMed  CAS  Google Scholar 

  • Herbert RJT, Hibbard BM, Sheppard MA (1969) Metabolic behaviour and radiation dosimetry of 99mTc-albumin in pregnancy. J Nucl Med 10:224–232

    PubMed  CAS  Google Scholar 

  • Hibbard BM, Herbert RJT (1960) Fetal radiation dose following administration of radio-iodinated albumin. Clin Sci 19:337–344

    PubMed  CAS  Google Scholar 

  • International Commission on Radiological Protection (1987) Technetium-labelled albumin (HSA). In: Annals of the ICRR Radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, p 173

    Google Scholar 

  • Lamson III M, Callahan RJ, Castronovo FP, McKusick KA, Potsaid MS (1974) A rapid index of free activity in preparations of 99mTc-albumin. J Nucl Med 15:1061–1062

    PubMed  Google Scholar 

  • Lin SM, Winchell HS, Shipley BA (1971) Use of Fe(II) or Sn(II) alone for technetium labelling of albumin. J Nucl Med 12:204–211

    PubMed  CAS  Google Scholar 

  • McAfee JG, Fueger GF, Baggish MS, Holzman GB, Zolle I (1964) 99mTc labeled serum albumin for scintillation scanning of the placenta. J Nucl Med 5:936–946

    PubMed  CAS  Google Scholar 

  • Narasimhan DVS, Mani RS (1975) Electrolytic preparation of 99mTc-human serum albumin using tin electrodes. Radiochim Radioanal Lett 20:307–316

    CAS  Google Scholar 

  • Persson RBR, Liden K (1969) 99mTc-labelled human serum albumin: a study of the labelling procedure. Int J Appl Radiat Isot 20:241–248

    PubMed  CAS  Google Scholar 

  • Philippe L, Mena I, Sarcourt J, French WJ (1988) Evaluation of valvular regurgitation by factor analysis of first-pass angiography. J Nucl Med 29:159–167

    PubMed  CAS  Google Scholar 

  • Steigman J, Meinken G, Richards P (1975) The reduction of pertechnetate-99 by stannous chloride I. The stoichiometry of the reaction in HCl, in a citrate buffer and in a DTPA buffer. Int J Appl Radiat Isot 26:601–609

    CAS  Google Scholar 

  • Stern HS, Zolle I, McAfee JG (1965) Preparation of 99mTc-labelled serum albumin. Int J Appl Radiat Isot 16:283–288

    PubMed  CAS  Google Scholar 

  • Stern HS, McAfee JG, Zolle I (1966) Technetium-99m-albumin. In: Andrews GA, Knisely RM, Wagner HN Jr (eds) Radioactive pharmaceuticals. AEC symposium series no. 6(CONF-651111), Oak Ridge, Tenn., pp 359–382

    Google Scholar 

  • Strauss HW, Zaret BL, Hurley PJ, Natarajan TK, Pitt P (1971) A scintiphotographic method for measuring left ventricular ejection fraction in man without cardiac catheterization. Am J Cardiol 28:575–580

    PubMed  CAS  Google Scholar 

  • Takeda Y, Reeve EB (1963) Studies of the metabolism and distribution of albumin with autologous 131I-albumin in healthy men. J Lab Clin Med 61:183–202

    PubMed  CAS  Google Scholar 

  • United States Pharmacopeial Convention (2005) Official Monographs: Technetium Tc 99m albumin injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1849

    Google Scholar 

  • Williams MJ, Deegan T (1971) The process involved in the binding of technetium-99m to human serum albumin. Int J Appl Radiat Isot 22:767–774

    PubMed  CAS  Google Scholar 

  • World Health Organization (1994) Requirements for the collection, processing and quality control of blood, blood components and plasma derivatives, requirements for biological substances No. 27, WHO, Technical Report Series No. 840

    Google Scholar 

  • Zolle I, Oniciu L, Höfer R (1973) Contribution to the study of the mechanism of labelling human serum albumin (HSA) with Technetium-99m. Int J Appl Radiat Isot 24:621–626

    PubMed  CAS  Google Scholar 

References

  • Agnew JE (1991) Characterizing lung aerosol penetration. J Aerosol Med 4:237–250

    Google Scholar 

  • Bell WR, Simon TL (1976) A comparative analysis of pulmonary perfusion scans with pulmonary angiograms: From a national cooperative study. Am Heart J 92:700–706

    PubMed  CAS  Google Scholar 

  • Chandra R, Shannon J, Braunstein P, Durlov OL (1973) Clinical evaluation of an instant kit for preparation of 99mTc-MAA for lung scanning. J Nucl Med 14:702–705

    PubMed  CAS  Google Scholar 

  • Council of Europe (1992) Guide for the preparation, use and quality assurance of blood components. Council of Europe, Strasbourg

    Google Scholar 

  • Davis MD, Taube RA (1979) Re: toxicity and safety factors associated with lung perfusion studies with radiolabeled particles (letter to the editor). J Nucl Med 20:1099

    Google Scholar 

  • Dibos PE (1995) Deep venous thrombosis. In: Wagner HN Jr, Szabo S, Buchanan JW (eds) Principles of nuclear medicine, 2nd edn. Saunders, Philadelphia, pp 872–880

    Google Scholar 

  • Council of Europe (2004a) Human albumin injection, monograph 255. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-Ruffine

    Google Scholar 

  • Council of Europe (2004b) Human plasma for separation, monograph 853. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-Ruffine

    Google Scholar 

  • Council of Europe (2005) Technetium 99mTc macrosalb injection. European pharmacopeia 5.0, monograph no 296. Council of Europe, Maisonneuve, Sainte-Ruffine

    Google Scholar 

  • Gottschalk A, Juni JE, Sostman HD, Coleman RE, Thrall J, McKusick KA, Froelich JW, Alavi A (1993 a) Ventilation-perfusion scintigraphy in the PIOPED study. Part I. Data collection and tabulation. J Nucl Med 34:1109–1118

    PubMed  CAS  Google Scholar 

  • Gottschalk A, Sostman HD, Coleman RE, Juni JE, Thrall J, McKusick KA, Froelich JW, Alavi A (1993 b) Ventilation-perfusion scintigraphy in the PIOPED study. Part II. Evaluation of the scintigraphic criteria and interpretations. J Nucl Med 34:1119–1126

    PubMed  CAS  Google Scholar 

  • Heck LL, Duley JW Jr (1974) Statistical considerations in lung imaging with Tc-99m-albumin particles. Radiology 113:675–679

    PubMed  CAS  Google Scholar 

  • Heyman S (1979) Toxicity and safety factors associated with lung perfusion studies with radiolabeled particles (letter to the editor). J Nucl Med 20:1098–1099

    PubMed  CAS  Google Scholar 

  • International Commission on Radiological Protection (1987) Technetium-labelled macroaggregated albumin. In: Annals of the ICRP. Radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol. 18, no. 1–4. Pergamon, Oxford, pp 223–224

    Google Scholar 

  • Malone LA, Malone JF, Ennis JT (1983) Kinetics of technetium 99m-labelled macroaggregated albumin in humans. Br J Radiol 56:109–112

    PubMed  CAS  Google Scholar 

  • Monroe LA, Thompson WL, Anderton NS, Burdine JA (1974) Evaluation of an improved 99mTc-stannous aggregated albumin preparation for lung scanning. J Nucl Med 15:192–194

    PubMed  CAS  Google Scholar 

  • Robbins PJ, Feller PA, Nishiyama H (1976) Evaluation and dosimetry of a 99mTc-Sn-MAA lung imaging agent in humans. Health Phys 30:173–176

    PubMed  CAS  Google Scholar 

  • Saenger EL, Buncher CR, Specker BL, McDvitt RA (1985) Determination of clinical efficacy: nuclear medicine as applied to lung scanning. J Nucl Med 26:793–806

    PubMed  CAS  Google Scholar 

  • Subramanian G, Arnold RW, Thomas FD, McAfee JG (1972) Evaluation of an instant 99mTc-labeled lung scanning agent. J Nucl Med 13 (Abstr):790

    Google Scholar 

  • Taplin GV, Chopra SK (1978) Lung perfusion-inhalation scintigraphy in obstructive airway disease and pulmonary embolism. Radiol Clin N Am 16:491–513

    PubMed  CAS  Google Scholar 

  • Taplin GV, MacDonald NS (1971) Radiochemistry of macroaggregated albumin and newer lung scanning agents. Sem Nucl Med 1:132–152

    CAS  Google Scholar 

  • Taplin GV, Johnson DE, Dore EK, Kaplan HS (1964a) Suspensions of radio albumin aggregates for photoscanning the liver, spleen, lung and other organs. J Nucl Med 5:259–275

    PubMed  CAS  Google Scholar 

  • Taplin GV, Johnson DE, Dore EK, Kaplan HS (1964b) Lung photoscans with macroaggregates of human serum radioalbumin. Health Phys 10:1219–1227

    PubMed  CAS  Google Scholar 

  • Tow DE, Wagner HN Jr (1967) Recovery of pulmonary arterial blood flow in patients with pulmonary embolism. N Engl J Med 276:1053–1059

    PubMed  CAS  Google Scholar 

  • Tow DE, Wagner HN Jr, Lopez-Majano V, Smith E, Migita T (1966) Validity of measuring regional pulmonary arterial blood flow with macroaggregates of human serum albumin. Am J Roent-genol 96:664–676

    Google Scholar 

  • United States Pharmacopeial Convention (2005) Official Monographs: Technetium Tc 99m albumin aggregated injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1850

    Google Scholar 

  • Vincent WR, Goldberg SJ, Desilets D (1968) Fatality immediately following rapid infusion of macroaggregates of 99mTc-albumin (MAA) for lung scan. Radiology 91:1181–1184

    Google Scholar 

  • Vlahos L, MacDonald AF, Causer DA (1976) Combination of isotope venography and lung scanning. Br J Radiol 49:840–851

    PubMed  CAS  Google Scholar 

  • Wagner HN Jr (1995) Regional ventilation and perfusion. In: Wagner HN Jr, Szabo S, Buchanan JW (eds) Principles of nuclear medicine, 2nd edn. Saunders, Philadelphia, pp 887–895

    Google Scholar 

  • Wagner HN Jr, Sabiston DC Jr, Iio M, McAfee JG, Langan JK (1964a) Regional pulmonary blood flow in man by radioisotope scanning. JAMA 187:601–603

    PubMed  Google Scholar 

  • Wagner HN Jr, Sabiston DC Jr, McAfee JG, Tow DE, Stern HS (1964b) Diagnosis of massive pulmonary embolism in man by radioisotope scanning. N Engl J Med 271:377–384

    PubMed  Google Scholar 

  • Wagner HN Jr, Lopez-Majano V, Langan JK, Joshi RC (1968) Radioactive xenon in the differential diagnosis of pulmonary embolism. Radiology 91:1168–1174

    PubMed  Google Scholar 

  • World Health Organization (1994) Requirements for the collection, processing and quality control of blood, blood components and plasma derivatives, requirements for biological substances No. 27, Technical Report Series No. 840

    Google Scholar 

References

  • Allen DR, Ferens JM, Cheney FW, Nelp WB (1978) Critical evaluation of acute cardiopulmonary toxicity of microspheres. J Nucl Med 19:1204–1208

    Google Scholar 

  • Alm A (1975) Radioactively labelled microspheres in regional cerebral blood flow determinations. A study on monkeys with 15-and 35-µm spheres. Acta Physiol Scand 95:60–65

    PubMed  CAS  Google Scholar 

  • Bergmann H, Böck F, Brenner H, Höfer R (1973) Quantitative evaluation of arterio-venous shunts in brain tumours. In: Medical radioisotope scintigraphy 1972, vol. II, International Atomic Energy Agency, Vienna, p 487

    Google Scholar 

  • Blau M, Wicks R, Thomas SR, Lathrop KA (1982) MIRD dose estimate report no. 10. Radiation absorbed dose from albumin microspheres labelled with technetium-99m. J Nucl Med 23:915–917

    PubMed  CAS  Google Scholar 

  • Bolles TF, Kubiatowicz DO, Evans RL, Grotenhuis IM, Nora JC (1973) Tc-99m-labelled albumin (human) microspheres (15–30 micron). Their preparation, properties and uses. In: Radiopharmaceuticals and labelled compounds, vol. 1. International Atomic Energy Agency, Vienna, p 151–167

    Google Scholar 

  • Council of Europe (1992) Guide for the preparation, use and quality assurance of blood components. Strasbourg

    Google Scholar 

  • Council of Europe (2004a) Human albumin injection, monograph 255. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-Ruffine

    Google Scholar 

  • Council of Europe (2004b) Human plasma for separation, monograph 853. European pharmacopeia. Council of Europe, Maisonneuve, Sainte-Ruffine

    Google Scholar 

  • Council of Europe (2005) Technetium 99mTc microspheres injection. European pharmacopeia 5.0, monograph no 570. Council of Europe, Maisonneuve, Sainte-Ruffine

    Google Scholar 

  • Davis MA, Taube RA (1978) Pulmonary perfusion imaging: acute toxicity and safety factors as a function of particle size. J Nucl Med 19:1209–1213

    Google Scholar 

  • Fortuin NJ, Kaihara S, Becker LC, Pitt B (1971) Regional myocardial blood flow in the dog studied with radioactive microspheres. Cardiovasc Res 5:331–336

    PubMed  CAS  Google Scholar 

  • Harding LK, Horsfield K, Singhal SS, Cumming G (1973) The proportion of lung vessels blocked by albumin microspheres. J Nucl Med 14:579–581

    PubMed  CAS  Google Scholar 

  • Heck LL, Duley JW Jr (1974) Statistical considerations in lung imaging with Tc-99m-albumin particles. Radiology 113:675–679

    PubMed  CAS  Google Scholar 

  • Heyman S (1979) Toxicity and safety factors associated with lung perfusion studies with radiolabeled particles. J Nucl Med 20:1098–1099

    PubMed  CAS  Google Scholar 

  • International Commission on Radiological Protection (1987) Technetiurn-labelled albumin microspheres (1987) In: Annals of the ICRP, Radiation dose to patients from radiopharmaceuticals, Bio-kinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 227–228

    Google Scholar 

  • Krejcarek GE, Bradford KL, Bolles TF (1974) Instant labelling human serum albumin micro-spheres. J Nucl Med 15 (Abstr):509

    Google Scholar 

  • Littenberg RL (1975) Anaphylactoid reaction to human albumin microspheres. J Nucl Med 16:236–237

    PubMed  CAS  Google Scholar 

  • Martin LG, Larose JH, Sybers RG, Tyras DH, Symbas PN (1973) Myocardial perfusion imaging with Tc-99 m-albumin microspheres. Radiology 107:367–370

    PubMed  CAS  Google Scholar 

  • Mayron LW, Kaplan E (1975) A comparison of four techniques for labelling albumin microspheres with technetium-99m. Int J Nucl Med Biol 2:74–80

    PubMed  CAS  Google Scholar 

  • Mishkin FS, Brashear RE (1971) Pulmonary and systemic blood pressure responses to large doses of albumin microspheres. J Nucl Med 12:251–252

    PubMed  CAS  Google Scholar 

  • Rhodes BA (1971) Low probability of allergic reaction to albumin microspheres. J Nucl Med 12:649–650

    PubMed  CAS  Google Scholar 

  • Rhodes BA, Zolle I, Buchanan JW, Wagner HN Jr (1969) Radioactive albumin microspheres for studies of the pulmonary circulation. Radiology 92:1453–1460

    PubMed  CAS  Google Scholar 

  • Rhodes BA, Stern HS, Buchanan JW, Zolle I, Wagner HN Jr (1971) Lung scanning with Tc-99m-microspheres. Radiology 99:613–621

    CAS  Google Scholar 

  • Rhodes BA, Greyson ND, Siegel ME, Giargiana FA Jr, White RI Jr, Williams GM, Wagner HN Jr (1973) The distribution of radioactive microspheres after intra-arterial injection in the legs of patients with peripheral vascular disease. Am J Roentgenol Radium Ther Nucl Med 118:820–826

    PubMed  CAS  Google Scholar 

  • Stang PC, Roelands JF, Cohen P (1975) Immunologic relationships of human serum albumin, macro aggregated albumin and albumin microspheres. In: Subramanian G, Rhodes BA, Cooper JF, Sodd VJ (eds) Radiopharmaceuticals. Society of Nuclear Medicine, New York, p 292

    Google Scholar 

  • Strauss HW, Hurley PJ, Rhodes BA, Wagner HN Jr (1969) Quantification of right-to-left transpul-monary shunts in man. J Lab Clin Med 74:597–607

    PubMed  CAS  Google Scholar 

  • Wagner HN Jr, Stern HS, Rhodes BA, Reba RC, Hosain F, Zolle I (1968) Design and development of new radiopharmaceuticals. In: Medical radioisotope scintigraphy, vol. II. IAEA Vienna, pp 3–24

    Google Scholar 

  • Wagner HN Jr, Rhodes BA, Sasaki Y, Ryan JP (1969) Studies of the circulation with radioactive microspheres. Invest Radiol 4:374–386

    PubMed  Google Scholar 

  • Weller DA (1975) Toxicity of particles on intracoronary injection. In: Subramanian G, Rhodes BA, Cooper JF, Sodd VJ (eds) Radiopharmaceuticals. Society of Nuclear Medicine, New York, p 370

    Google Scholar 

  • Weller DA, Adolph RJ, Wellman HN, Carrol RG, Kim O (1972) Myocardial perfusion scintigraphy after intracoronary injection of Tc-99m-labeled human albumin microspheres. Toxicity and efficacy for detecting myocardial infarction in dogs, preliminary results in man. Circulation 46:963–975

    PubMed  CAS  Google Scholar 

  • World Health Organization (1994) Requirements for the collection, processing and quality control of blood, blood components and plasma derivatives, requirements for biological substances No. 27. WHO Technical Report Series No. 840

    Google Scholar 

  • Zolle I, Kropf G (1982) Factors affecting the trapping and clearance of microspheres. In: Anghilieri L (ed) General processes of radiotracer localization, vol. 2. CRC Press, Boca Raton, pp 15–38

    Google Scholar 

  • Zolle I, Rhodes BA, Wagner HN Jr (1970) Preparation of metabolizable radioactive human serum albumin microspheres for studies of the circulation. Int J Appl Rad Isot 21:155–167

    CAS  Google Scholar 

References

  • Adams FG, Horton PW, Selim SM (1980) Clinical comparison of three liver scanning agents. Eur J Nucl Med 5:237–239

    PubMed  CAS  Google Scholar 

  • Atkins HL, Cloutier RJ, Lathrop KA et al (1975) Studies of the reticuloendothelial system (RES). III. Blockade of the RES in man. J Nucl Med 16:108A–108B

    Google Scholar 

  • Colombetti LG (1974) 99mTc-Sn-colloid for liver dynamic studies. Radiobiol Radiother 15:47–53

    CAS  Google Scholar 

  • Council of Europe (2005) Technetium 99mTc tin colloid injection. European pharmacopeia 5.0, monograph no 689. Council of Europe, Maisonneuve, Sainte-Ruffine

    Google Scholar 

  • Hladik WB, III, Gregorio N, Braun TL, Stathis VJ, Ponto JA (1987a) Radiopharmaceutical information and consultation services. In: Hladik WB, III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, p 392

    Google Scholar 

  • Hladik WB, III, Ponto JA, Lentle BC, Laven DL (1987b) Iatrogenic alterations in the biodistribution of radiotracers as a result of drug therapy: reported instances. In: Hladik WB, III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 189–219

    Google Scholar 

  • Hodges R (1987) Iatrogenic alterations in the bio distribution of radiotracers as a result of drug therapy: theoretical considerations. In: Hladik WB, III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 165–188

    Google Scholar 

  • Höfer R, Egert H (1963) Radiogoldverteilung im Knochenmark [in German]. Bull Schweiz Akad Med Wiss 19:36–46

    Google Scholar 

  • Höfer R, Ogris E, Pfeiffer G (1964) Kolloidspeicherung im Knochenmark bei Bluterkrankungen. Wien Z Inn Med 45:330–335

    Google Scholar 

  • International Commission on Radiological Protection (1987) Technetium-labeled colloids. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 179–183

    Google Scholar 

  • International Commission on Radiological Protection (1991) In: Annals of the ICRP, radiological protection in biomedical research, ICRP Publication 62, vol 22, no 3. Pergamon, Oxford, pp 25–28

    Google Scholar 

  • Klingensmith WC III, Tsan MF, Wagner HN Jr (1976) Factors affecting the uptake of 99mTc-sulfur colloid by the lung and kidney. J Nucl Med 17:681

    PubMed  CAS  Google Scholar 

  • Lin MS, Winchell HS (1972) A “kit” method for the preparation of a technetium-tin(II) colloid and a study of its properties. J Nucl Med 13:58–65

    PubMed  CAS  Google Scholar 

  • Marciniak M (1981) Bivalent tin metabolism and toxicity after intravenous injection in rats. Acta Physiol Pol 32:2

    Google Scholar 

  • Nelp WB (1975) An evaluation of colloids for RES function studies. In: Subramanian G, Rhodes BA, Cooper JF, Sodd VJ (eds) Radiopharmaceuticals. Society of Nuclear Medicine, New York, pp 349–355

    Google Scholar 

  • Nelp WB, Bower RE (1969) The quantitative distribution of the erythron and the RE cell in the bone marrow organ of man. Blood 34:276–280

    PubMed  CAS  Google Scholar 

  • Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radio-pharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–289

    Google Scholar 

  • Schuind F, Schoutens A, Verhas M, Verschaeren A (1984) Uptake of colloids by bone is dependent on bone blood flow. Eur J Nucl Med 9:461–463

    PubMed  CAS  Google Scholar 

  • Subramanian G, McAfee JG (1970) Stannous oxide colloid labeled with 99mTc or 113In for bone marrow imaging. J Nucl Med 11:365–366

    Google Scholar 

  • Vetter H, Falkner R, Neumayr A (1954) The disappearance rate of colloidal radiogold form the circulation and its application to the estimation of liver blood flow in normal and cirrhotic patients. J Clin Invest 33:1594

    PubMed  CAS  Google Scholar 

  • Whateley TL, Steele G (1985) Particle size and surface charge studies of a tin colloid radiopharmaceutical for liver scintigraphy. Eur J Nucl Med 19:353–357

    Google Scholar 

References

  • Adams FG, Horton PW, Selim SM (1980) Clinical comparison of three liver scanning agents. Eur J Nucl Med 5:237–239

    PubMed  CAS  Google Scholar 

  • Alavi A (1982) Detection of gastrointestinal bleeding with 99mTc-sulfur colloid. Semin Nucl Med 12:126–138

    PubMed  CAS  Google Scholar 

  • Council of Europe (2005a) Technetium 99mTc colloidal rhenium sulphide injection. European pharmacopeia 5.0, monograph, no 126. Council of Europe, Maisonneuve, Sainte-Ruffine

    Google Scholar 

  • Council of Europe (2005b) Technetium 99mTc sulfur colloid injection. European pharmacopeia 5.0, monograph, no 131. Council of Europe, Maisonneuve, Sainte-Ruffine

    Google Scholar 

  • Haney TA, Ascanio I, Gigliotti JA, Gusmano EA, Bruno GA (1971) Physical and biological properties of a 99mTc-sulfur colloid preparation containing disodium edetate. J Nucl Med 12:64–68

    PubMed  CAS  Google Scholar 

  • Hladik WB III, Gregorio N, Braun TL, Stathis VJ, Ponto JA (1987a) Radiopharmaceutical information and consultation services. In: Hladik WB, III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, p 392

    Google Scholar 

  • Hladik WB III, Ponto JA, Lentle BC, Laven DL (1987b) Iatrogenic alterations in the bio distribution of radiotracers as a result of drug therapy: reported instances. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 189–219

    Google Scholar 

  • Hodges R (1987) Iatrogenic alterations in the bio distribution of radiotracers as a result of drug therapy: theoretical considerations. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 165–188

    Google Scholar 

  • Höfer R, Egert H (1963) Radiogoldverteilung im Knochenmark [in German]. Bull Schweiz Akad Med Wiss 19:36–46

    Google Scholar 

  • Höfer R, Ogris E, Pfeiffer G (1964) Kolloidspeicherung im Knochenmark bei Bluterkrankungen [in German]. Wien Z Inn Med 45:330–335

    Google Scholar 

  • International Commission on Radiological Protection (1987a) Technetium-labelled colloids (1987) In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 179–183

    Google Scholar 

  • International Commission on Radiological Protection (1987b) Technetium-labelled non-absorb able markers (1987) In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol. 18, no. 1–4. Pergamon, Oxford, pp 225–226

    Google Scholar 

  • International Commission on Radiological Protection (1991) In: Annals of the ICRP, Radiological protection in biomedical research, ICRP Publication 62, vol 22, no 3. Pergamon, Oxford, pp 25–28

    Google Scholar 

  • Klingensmith WC III, Tsan MF, Wagner HN Jr (1976) Factors affecting the uptake of 99mTc-sulfur colloid by the lung and kidney. J Nucl Med 17:681

    PubMed  CAS  Google Scholar 

  • Larson SM, Nelp WB (1966) Radiopharmacology of a simplified technetium-99m-colloid preparation for photos canning. J Nucl Med 7:817–826

    PubMed  CAS  Google Scholar 

  • Nelp WB (1975) An evaluation of colloids for RES function studies. In: Subramanian G, Rhodes BA, Cooper JF, Sodd VJ (eds) Radiopharmaceuticals. Society of Nuclear Medicine, New York, pp 349–355

    Google Scholar 

  • Nelp WB, Bower RE (1969) The quantitative distribution of the erythron and the RE cell in the bone marrow organ of man. Blood 34:276–280

    PubMed  CAS  Google Scholar 

  • Patton, DP, Garcia, EN, Webber, MM (1966) Simplified preparation of technetium-99m-sulfide colloid for liver scanning. Am J Roentgenol Radium Ther Nucl Med 97:880

    PubMed  CAS  Google Scholar 

  • Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radio-pharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–289

    Google Scholar 

  • Schuind F, Schoutens A, Verhas M, Verschaeren A (1984) Uptake of colloids by bone is dependent on bone blood flow. Eur J Nucl Med 9:461–463

    PubMed  CAS  Google Scholar 

  • Stacher G, Bergmann H (1992) Scintigraphic quantitation of gastrointestinal motor activity and transport: oesophagus and stomach. Eur J Nucl Med 19:815–823

    PubMed  CAS  Google Scholar 

  • Stern HS, McAfee JG, Subramanian G (1966) Preparation, distribution and utilization of tech netium-99m-sulfur colloid. J Nucl Med 7:665–675

    PubMed  CAS  Google Scholar 

  • United States Pharmacopeial Convention (2005) United States Pharmacopeia (USP) 28 official monographs: Technetium Tc 99m sulfur colloid injection. United States Pharmacopeial Convention, Rockville, Md, p 1865

    Google Scholar 

  • Vetter H, Falkner R, Neumayr A (1954) The disappearance rate of colloidal radiogold form the circulation and its application to the estimation of liver blood flow in normal and cirrhotic patients. J Clin Invest 33:1594

    PubMed  CAS  Google Scholar 

  • Wagner HN Jr, Iio M (1964) Studies of the reticuloendothelial system (RES). III. Blockade of the RES in man. J Clin Invest 42:1525–1532

    Google Scholar 

  • Warbick-Cerone A, Phythian JR (1982) The role of endocytosis in the localization of radiotracers. In: Anghileri LJ (ed) General processes of radiotracer localization, vol 1. CRC Press, Boca Raton, p 173

    Google Scholar 

References

  • Chia HL (1986) Particulate radiopharmaceuticals in nuclear medicine. In: Cox PH (ed) Radiopharmacy and radiopharmacology yearbook II. Grime and Stratton, New York

    Google Scholar 

  • Hladik WB III, Gregorio N, Braun TL, Stathis VJ, Ponto JA (1987a) Radiopharmaceutical information and consultation services. In: Hladik WB, III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, p 392

    Google Scholar 

  • Hladik WB III, Ponto JA, Lentle BC, Laven DL (1987b) Iatrogenic alterations in the bio distribution of radiotracers as a result of drug therapy: reported instances. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 189–219

    Google Scholar 

  • Hodges R (1987) Iatrogenic alterations in the bio distribution of radiotracers as a result of drug therapy: theoretical considerations. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 165–188

    Google Scholar 

  • Honda T, Kazem I, Croll MN, Brady LW (1970) Instant labeling of macro-and microaggregated albumin with 99mTc. J Nucl Med 11:580–585

    PubMed  CAS  Google Scholar 

  • Iio M, Wagner HN Jr, Scheffel U, Jabbour B (1963) Studies of the reticuloendothelial system (RES). I. Measurement of the phagocytic capacity of the RES in man and dog. J Clin Invest 42:417–426

    PubMed  CAS  Google Scholar 

  • International Commission on Radiological Protection (1987) Technetium-labelled colloids. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 179–183

    Google Scholar 

  • International Commission on Radiological Protection (1991) ICRP Publication 62. In: Annals of the ICRP, radiological protection in biomedical research, vol 22, no 3. Pergamon, Oxford pp 25–28

    Google Scholar 

  • Kitani K, Taplin GV (1972) Biliary excretion of 99mTc-albumin micro aggregate degradation products (a method for measuring Kupffer cell digestive function?). J Nucl Med 13:260–264

    PubMed  CAS  Google Scholar 

  • McAfee JG, Ause RG, Wagner HN Jr (1975) Diagnostic value of scintillation scanning of the liver. Arch Intern Med 116:95–110

    Google Scholar 

  • Nelp WB (1975) An evaluation of colloids for RES function studies. In: Subramanian G, Rhodes BA, Cooper JF, Sodd VJ (eds) Radiopharmaceuticals. Society of Nuclear Medicine, New York, pp 349–355

    Google Scholar 

  • Nelp WB, Bower RE (1969) The quantitative distribution of the erythron and the RE cell in the bone marrow organ of man. Blood 34:276–280

    PubMed  CAS  Google Scholar 

  • Palmer DI, Rifkind D, Brown DW (1971) 131I-labeled colloidal serum albumin in the study of reticuloendothelial system function. III. Phagocytosis and catabolism compared in normal, leukemia, and immunos up pressed human subjects. J Infect Dis 123:465–469

    PubMed  CAS  Google Scholar 

  • Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radio-pharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–289

    Google Scholar 

  • Reske SN, Vyska K, Feinendegen LE (1981) In vivo assessment of phagocytic properties of Kupffer cells. J Nucl Med 22:405

    PubMed  CAS  Google Scholar 

  • Schuind F, Schoutens A, Verhas M, Verschaeren A (1984) Uptake of colloids by bone is dependent on bone blood flow. Eur J Nucl Med 9:461–463

    PubMed  CAS  Google Scholar 

  • Shaldon S, Chiandussi L, Guevara L, Caesar J, Sherlock S (1961) The estimation of hepatic blood flow and intrahepatic shunted blood flow by colloidal he at-denatured human serum albumin labeled with 131I. J Clin Invest 40:1346–1354

    PubMed  CAS  Google Scholar 

  • Taplin GV, Dore EK, Johnson DE (1964) Hepatic blood flow and reticuloendothelial system studies with radio colloids. In: Kniseley RM et al (eds) Dynamic clinical studies with radio isotopes. US Atomic Energy Commission, Division of Technical Information, TID 7678, pp 285–317

    Google Scholar 

  • Taplin GV, Johnson DE, Dore EK, Kaplan HS (1964) Suspensions of radioalbumin aggregates for photoscanning the liver, spleen, lung and other organs. J Nucl Med 5:259–275

    PubMed  CAS  Google Scholar 

  • United States Pharmacopeial Convention (2005) United States Pharmacopeia (USP) 28 official monographs: Technetium Tc 99m albumin colloid injection. United States Pharmacopeial Convention, Rockville, Md, p 1851

    Google Scholar 

  • Wagner HN Jr, Iio M, Hornick RB (1963) Studies of the reticuloendothelial system (RES). II. Changes in the phagocytic capacity of the RES in patients with certain infections. J Clin Invest 42:427–434

    PubMed  CAS  Google Scholar 

  • Yamada H, Johnson DE, Griswold ML et al (1969) Radioalbumin microagg re gates for reticuloendothelial organ scanning and function assessment. J Nucl Med 10:453–454

    Google Scholar 

References

  • Agnew JE, Bateman JR, Watts M, Paramananda V, Pavia D, Clarke SW (1981) The importance of aerosol penetration for lung mucociliary clearance studies. Chest 80(Suppl):843–846

    PubMed  CAS  Google Scholar 

  • Angelberger P, Zolle I, Strigl A, Kohn H, Mostbeck A, Fiedler W (1985) A dry aerosol of 99mTc-albumin-millimicrospheres for lung ventilation scintigraphy, In: Cox PH, Limouris G, Woldring MG (eds) Progress in radiopharmacology, vol 4. Martinus Nijhoff, The Hague, pp 73–86

    Google Scholar 

  • Hladik WB, III, Ponto JA, Lentle BC, Laven DL (1987b) Iatrogenic alterations in the biodistribution of radiotracers as a result of drug therapy: reported instances. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 189–219

    Google Scholar 

  • Iio M, Wagner HN Jr, Scheffel U, Jabbour B (1963) Studies of the reticuloendothelial system (RES). I. Measurement of the phagocytic capacity of the RES in man and dog. J Clin Invest 42:417–426

    PubMed  CAS  Google Scholar 

  • International Commission on Radiological Protection (1987a) Technetium-labelled colloids (1987) In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4, Pergamon, Oxford, pp 179–183

    Google Scholar 

  • International Commission on Radiological Protection (1987b) Technetium-labelled aerosols (1987) In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 217–219

    Google Scholar 

  • International Commission on Radiological Protection (1991) In: Annals of the ICRP, radiological protection in biomedical research, ICRP Publication 62, vol 22, no 3, Pergamon, Oxford, pp 25–28

    Google Scholar 

  • Kitani K, Taplin GV (1972) Biliary excretion of 99mTc-albumin micro aggregate degradation products (a method for measuring Kupffer cell digestive function?). J Nucl Med 13:260–264

    PubMed  CAS  Google Scholar 

  • Köhn H, Klech H, Angelberger P, Strigl A, Zolle I, Kummer F, Mostbeck A (1985) Dry aerosol of monodisperse millimicrospheres for ventilation imaging: production, delivery system, and clinical results in comparison with 81mKr and 127Xe. Eur J Nucl Med 10:411–416

    PubMed  Google Scholar 

  • McAfee JG, Ause RG, Wagner HN Jr (1975) Diagnostic value of scintillation scanning of the liver. Arch Intern Med 116:95–110

    Google Scholar 

  • Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radio-pharmaceutical formulation problems. In: Uladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp. 268–289

    Google Scholar 

  • Reske SN, Vyska K, Feinendegen LE (1981) In vivo assessment of phagocytic properties of Kupffer cells. J Nucl Med 22:405

    PubMed  CAS  Google Scholar 

  • Santolicandro A, Giuntini C (1979) Patterns of deposition of labelled monodispersed aerosols in obstructive lung disease. J Nucl Med All Sci 23:115

    CAS  Google Scholar 

  • Scheffel U, Rhodes BA, Natarajan TK, Wagner HN Jr (1972) Albumin microspheres for study of the reticuloendothelial system. J Nucl Med 13:498–503

    PubMed  CAS  Google Scholar 

  • Szabo Z, Vbsberg H, Segall M, Feinendegen LE (1984) Messung der mittleren Retentionszeiten 99mTc-makierter HSA-Millimikrosphären in der Leber — Klinische Ergebnisse bei Patienten mit operiertem Mammakarzinom [in German]. Nucl Med 23:171–176

    CAS  Google Scholar 

  • Villa M, Pretti O, Mosca R, Plassio G, Pasqualini R (1976) Preparation and evaluation of tin-albumin mill imicro spheres for labelling with Tc-99m. J Nucl Biol Med 20:168–171

    PubMed  CAS  Google Scholar 

  • Weiss T, Dorow P, Fdix R, Schmutzler H (1981) Pulmonales Aero sol verteilungs muster und regionale mukoziliäre Clearance bei Patienten mit chronisch obstruktiver Atemwegserkrankung und small airways disease [in German]. Atemw Lungenkrkh 7:172–178

    Google Scholar 

  • Wetterfors J, Gullberg R, Lilhedahl SO, Birke G, Olhage B (1960) Role of the stomach in albumin breakdown. Acta Med Scand 168:347

    PubMed  CAS  Google Scholar 

  • Zolle I, Bergmann H, Höfer R (1973) Millimicrospheres zur Funktionsprüfung des retikuloen-dothelialen Systems (RES) In: Teil, Fdlinger K, Höfer R (eds) Radioaktive Isotope in Klinik und Forschung, Band 10,2. Urban & Schwa rzenb erg, München-Berlin, 446–453

    Google Scholar 

  • Zolle I, Hosain F, Rhodes BA, Wagner HN Jr (1970) Human serum albumin millimicrospheres for studies of the reticuloendothdial system. J Nucl Med 11:379

    Google Scholar 

References

  • Alazraki N, Eshima D, Eshima LA, Herda SC, Murray DR, Vansant JP, Taylor AT (1997) Lymphoscintigraphy, the sentinel node concept, and the intraoperative gamma probe in melanoma, breast cancer and other potential cancers. Semin Nucl Med 27:55–67

    PubMed  CAS  Google Scholar 

  • Bergqvist L, Strand SE, Hafström L, Jönsson P-E (1984) Lymphoscintigraphy in patients with malignant melanoma: a quantitative and qualitative evaluation of its usefulness. Eur J Nucl Med 9:129–135

    PubMed  CAS  Google Scholar 

  • Cox CE, Pendas S, Cox JM, Joseph E, Shons AR, Yeatman T, Ku NN, Lyman GH, Berman C, Haddad F, Reintgen DS (1998) Guidelines for sentinel lymph node detection. Ann Surg 227:645–653

    PubMed  CAS  Google Scholar 

  • De Schrijver M, Streule K, Senekowitsch R, Fridrich R (1987) Scintigraphy of inflammation with nanometer-si zed colloidal tracers. Nucl Med Commun 8:895–908

    PubMed  Google Scholar 

  • Ege GN (1976) Internal mammary lymphoscintigraphy — the rationale, technique, interpretation and clinical application: a review based on 848 cases. Radiology 118:101–107

    PubMed  CAS  Google Scholar 

  • Ege GN (1983) Lymphoscintigraphy — techniques and applications in the management of breast carcinoma. Semin Nucl Med 13:26–34

    PubMed  CAS  Google Scholar 

  • Kaplan WD, Davis MA, Rose CM (1979) A comparison of two technetium-99m-labeled radiopharmaceuticals for lymphoscintigraphy. J Nucl Med 20:933–937

    PubMed  CAS  Google Scholar 

  • Kaplan WD, Piez CW, Gelman RS, Laffin SM, Rosenbaum EM, Jennings CA, McCormick CA, Harris JR, Henderson IC, Atkins HL (1985) Clinical comparison of two radiocolloids for internal mammary lymphoscintigraphy. J Nucl Med 26:1382–1385

    PubMed  CAS  Google Scholar 

  • Keshtgar MRS, Waddington WA, Lakhani SR, Ell PJ (1999) The sentinel node surgical oncology. Springer, Berlin Heidelberg New York, and Eur J Nucl Med 26:57–67

    Google Scholar 

  • Larson SM, Nelp WB (1966) Radiopharmacology of a simplified technetium-99m-colloid preparation for photo scanning. J Nucl Med 7:817–826

    PubMed  CAS  Google Scholar 

  • Lofferer O, Mostbeck A, Partsch H (1974) Lymphtransportstörung beim dicken Bein — Isotopen-lymphographische Ergebnisse [in German]. Z. Hautkr. 49(14): 615–622

    PubMed  CAS  Google Scholar 

  • Mostbeck A, Kahn P, Partsch H (1984) Quantitative Lymphographie beim Lymphödem. In: Bollinger A, Partsch H (eds) Initiale Lymphstrombahn [in German]. Georg Thieme, Stuttgart, pp 116–122

    Google Scholar 

  • Nagai K, Ito Y, Otsuka N, Muranaka A (1982) Deposition of small 99mTc-labeled colloids in bone marrow and lymph nodes. Eur J Nucl Med 7:66–70

    PubMed  CAS  Google Scholar 

  • Nitz DW P, Heidenreich P (eds) (1999) Sentinel-Lymphknoten In: Der Nuklearmediziner [in German]. Demeter, Munich

    Google Scholar 

  • Pattern DP, Garcia EN, Webber MM (1966) Simplified preparation of technetium-99m-sulfide colloid for liver scanning. Am J Roentgenol Radium Ther Nucl Med 97:880

    Google Scholar 

  • Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radio-pharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–289

    Google Scholar 

  • Strand S-E, Persson BRR (1979) Quantitative lymphoscintigraphy I: basic concepts for optimal uptake of radiocolloids in the parasternal lymph nodes of rabbits. J Nucl Med 20:1038–1046

    PubMed  CAS  Google Scholar 

References

  • Alazraki N, Eshima D, Eshima LA, Herda SC, Murray DR, Vansant JP, Taylor AT (1997) Lympho-scintigraphy, the sentinel node concept, and the intraoperative gamma probe in melanoma, breast cancer and other potential cancers. Semin Nucl Med 27:55–67

    PubMed  CAS  Google Scholar 

  • Chia HL (1986) Participate radiopharmaceuticals in nuclear medicine. In: Cox PH (ed) Radiopharmacy and Radiopharmacology yearbook II. Grune and Stratton, New York

    Google Scholar 

  • Cox CE, Pendas S, Cox JM, Joseph E, Shons AR, Yeatman T, Ku NN, Lyman GH, Berman C, Haddad F, Reintgen DS (1998) Guidelines for sentinel lymph node detection. Ann Surg 227:645–653

    PubMed  CAS  Google Scholar 

  • De Schrijver M, Streule K, Senekowitsch R, Fridrich R (1987) Scintigraphy of inflammation with nanometer-sized colloidal tracers. Nucl Med Commun 8:895–908

    PubMed  Google Scholar 

  • Ege GN (1976) Internal mammary lymphoscintigraphy — the rationale, technique, interpretation and clinical application: a review based on 848 cases. Radiology 118:101–107

    PubMed  CAS  Google Scholar 

  • Ege GN (1983) Lymphoscintigraphy — techniques and applications in the management of breast carcinoma. Semin Nucl Med 13:26–34

    PubMed  CAS  Google Scholar 

  • Froehlich JW (ed) (1985) Nuclear medicine in inflammatory diseases. In: Nuclear medicine annual. Raven, New York, pp 23–72

    Google Scholar 

  • Haney TA, Ascanio I, Gigliotti JA, Gusmano EA, Bruno GA (1971) Physical and biological properties of a 99mTc-sulfur colloid preparation containing disodium edetate. J Nucl Med 12:64–68

    PubMed  CAS  Google Scholar 

  • Höfer R, Ogris E, Pfeiffer G (1964) Kolloidspeicherung im Knochenmark bei Bluterkrankungen [in German]. Wien Z Inn Med 45:330–335

    Google Scholar 

  • Hotze A, Mahlstedt J, Wolf F (1984) Knochenmarkszintigraphie: Methode, Indikationen, Ergebnisse [in German]. Giebeler, Darmstadt

    Google Scholar 

  • Iio M, Wagner HN Jr, Scheffel U, Jabbour B (1963) Studies of the reticuloendothelial system (RES). I. Measurement of the phagocytic capacity of the RES in man and dog. J Clin Invest 42:417–426

    PubMed  CAS  Google Scholar 

  • International Commission on Radiological Protection (1987) Technetium-labeled colloids. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol. 18, no. 1–4. Pergamon, Oxford, pp 179–183

    Google Scholar 

  • International Commission on Radiological Protection (1991) ICRP Publication 62. In: Annals of the ICRP, radiological protection in biomedical research, vol. 22, no. 3. Pergamon, Oxford, pp 25–28

    Google Scholar 

  • Kaplan WD, Davis MA, Rose CM (1979) A comparison of two technetium-99m-labeled radiopharmaceuticals for lymphoscintigraphy. J Nucl Med 20:933–937

    PubMed  CAS  Google Scholar 

  • Kaplan WD, Piez CW, Gelman RS, Laffin SM, Rosenbaum EM, Jennings CA, McCormick CA, Harris JR, Henderson IC, Atkins HL (1985) Clinical comparison of two radiocolloids for internal mammary lymphoscintigraphy. J Nucl Med 26:1382–1385

    PubMed  CAS  Google Scholar 

  • Lofferer O, Mostbeck A, Partsch H (1974) Lymphtransportstörung beim dicken Bein — Isotopen-lymphographische Ergebnisse. Z Hautkr 49:615–622

    PubMed  CAS  Google Scholar 

  • McAfee JG, Subramanian G, Aburano T, Thomas FD, Fernandes P, Gagne G, Lyons B, Zapf-Longo C (1982) A new formulation of Tc-99m minimicro-aggregated albumin for marrow imaging: comparison with other colloids, In-Ill and Fe-59. J Nucl Med 23:21–28

    PubMed  CAS  Google Scholar 

  • Mostbeck A, Kahn P, Partsch H (1984) Quantitative Lymphographie beim Lymphödem. In: Bollinger A, Partsch H (eds) Initiale Lymphstrombahn [in German]. Georg Thieme, Stuttgart, pp 116–122

    Google Scholar 

  • Munz DL (1984a) Knochenmarkszintigraphie: Grundlagen und klinische Ergebnisse [in German]. Der Nuklearmediziner 7:251–268

    Google Scholar 

  • Munz DL (1984b) The scintigraphic bone marrow status in adult man: a new classification. In: Schmidt HAE, Adam WE (eds) Nuklearmedizin. Darstellung von Metabolismen und Organ-Funktionen. Schattauer, Stuttgart, p 640

    Google Scholar 

  • Nagai K, Ito Y, Otsuka N, Muranaka A (1982) Deposition of small 99mTc-labeled colloids in bone marrow and lymph nodes. Eur J Nucl Med 7:66–70

    PubMed  CAS  Google Scholar 

  • Nitz DWP, Heidenreich P (1999) Sentinel-Lymphknoten. In: Der Nuklearmediziner. Demeter, Munich

    Google Scholar 

  • Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radio-pharmaceutical formulation problems. Hladik WB III, Saha GB, Study KT (eds) In: Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–289

    Google Scholar 

  • Saha GB (1987) Normal bio distribution of diagnostic radiopharmaceuticals. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 6–7

    Google Scholar 

  • SolcoNanocoll (1992) Product monograph of the kit for the preparation of Tc-99m nanocolloid, issued by Sorin Biomedica, Italy

    Google Scholar 

  • Strand S-E, Persson BRR (1979) Quantitative lymphoscintigraphy I: basic concepts for optimal uptake of radiocolloids in the parasternal lymph nodes of rabbits. J Nucl Med 20:1038–1046

    PubMed  CAS  Google Scholar 

  • Vorne M, Lantto T, Paakkinen S, Salo S, Soini I (1989) Clinical comparison of 99mTc-HM-PAO labeled leukocytes and 99mTc-nanocolloid in the detection of inflammation. Acta Radiol 30:633–637

    PubMed  CAS  Google Scholar 

  • Wagner HN Jr, Iio M, Hornick RB (1963) Studies of the reticuloendothelial system (RES). II. Changes in the phagocytic capacity of the RES in patients with certain infections. J Clin Invest 42:427–434

    PubMed  CAS  Google Scholar 

References

  • Berman DS, Kiat H, Friedman JD, Wang FP, Van Train K, Matzev L, Maddahi J, Germane. G (1993) Separate acquisitions rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J Am Coll Cardiol 22:1455–1464

    PubMed  CAS  Google Scholar 

  • Borges-Neto S, Coleman RE, Jones RH (1990) Perfusion and function at rest and treadmill exercise using technetium-99m-sestamibi: comparison of one-and two-day protocols in normal volunteers. J Nucl Med 31:1128–1132

    PubMed  CAS  Google Scholar 

  • Bristol-Myers Squibb (2001) Product Information. Cardiolite Kit for the preparation of technetium Tc-99m sestamibi for injection. Bristol-Myers Squibb Medical Imaging, Billerica, Mass.

    Google Scholar 

  • Bull U, Kleinhans E, Reske SN (1996) Herz-Kreisiauf-System. In: Bull U, Schicha H, Biersack H-J, Knapp WH, Reiners C, Schober O (eds) Nuklearmedizin [in German]. Georg Thieme, Stuttgart, pp 203–246

    Google Scholar 

  • Coakley AJ (1991) Parathyroid localization — how and when? Eur J Nucl Med 18:151–152

    PubMed  CAS  Google Scholar 

  • European Commission (1999) Radiation protection 109, guidance on diagnostic reference levels (DRLs) for medical exposures. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Council of Europe (2005) Technetium [99mTc] sestamibi injection solution, European pharmacopeia monograph 1926. Maisonneuve, Sainte-Ruffine

    Google Scholar 

  • Hesse B, Tägli K, Cuocolo A et al (2005) EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 32:855–897

    PubMed  CAS  Google Scholar 

  • Hung JC, Wilson ME, Brown ML, Gibbons RJ (1991) Rapid preparation and quality control method for technetium-99m-2-methoxy isobutyl isonitrile (technetium-99m-sestamibi). J Nucl Med 32:2162–2168

    PubMed  CAS  Google Scholar 

  • Imbriaco M, Del Vecchio S, Riccardi A, Pace L, Di Salle F, Di Gennaro F, Salvatore M, Sodano A (2001) Scintimammography with 99mTc-MIBI versus dynamic MRI for non-invasive characterization of breast masses. Eur J Nucl Med 28:56–63

    PubMed  CAS  Google Scholar 

  • International Commission on Radiological Protection (1991) Technetium-labelled MIBI. In: Annals of the ICRP, radiological protection in biomedical research. ICRP Publication 62, vol. 22, no. 3, Pergamon, pp 21–24

    Google Scholar 

  • Maisey MN, Lowry A, Bischof-Delaloye A, Fridrich R, Inglese E, Khalil M, van der Schoot J (1990) European multicenter comparison of thallium-201 and technetium-99m-methoxyisobutyl isonitrile in ischemic heart disease. Eur J Nucl Med 16:869–872

    PubMed  CAS  Google Scholar 

  • Marcass C, Marzullo P, Oarodi O, Sambuceti G, L’Abbate A (1990) A new method of noninvasive quantitation of segmental myocardial wall thickening using technetium-99m 2-methoxy-isobutyl-isonitrile scintigraphy: results in normal subjects. J Nucl Med 31:173–177

    Google Scholar 

  • Maublant JC, Gachon P, Moins N (1988) Hexakis (2-methoxy isobutylisonitrile) technetium-99m and thallium-201 chloride: uptake and release in cultured myocardial cells. J Nucl Med 29:48–54

    PubMed  CAS  Google Scholar 

  • McBiles M, Lambert AT, Cote MG, Kim SY (1995) Sestamibi parathyroid imaging. Sem Nucl Med 25:221–234

    CAS  Google Scholar 

  • Palmedo H, Biersack HJ, Lastoria S, Maublant J, Prats E, Stegner HE, Bourgeois P, Hustinx R, Hil-son AJW, Bischof-Delaloye A (1998) Scintimammography with technetium-99m methoxyisobu-tyl isonitrile: results of a prospective European multicenter trial. Eur J Nucl Med 25:375–385

    PubMed  CAS  Google Scholar 

  • Palmedo H, Grünwald F, Bender H, Schomburg A, Mallmann P, Krebs D, Biersack HJ (1996) Scintimammography with technetium-99m methoxyisobutylisonitrile: comparison with mammography and magnetic resonance imaging. Eur J Nucl Med 23:940–946

    PubMed  CAS  Google Scholar 

  • Patel M, Sadek S, Jahan S, Owunwanne A (1995) A miniaturized rapid paper chromatographic procedure for quality control of technetium-99m sestamibi. Eur J Nucl Med 22:1416–1419

    PubMed  CAS  Google Scholar 

  • Piwnica-Worms D, Kronauge JF, Delmon L, Holman BL, Marsh JD, Jones AG (1990) Effect of metabolic inhibition on technetium-99m-MIBI kinetics in cultured chick myocardial cells. J Nucl Med 31:464–472

    PubMed  CAS  Google Scholar 

  • Sporn V, Perez Balino N, Holman BL, Sosa Liprandi A, Masoli O, Mitta A, Camin LL, Castiglia S, McKusick KA (1988) Simultaneous measurement of ventricular function and myocardial perfusion using the technetium-99m isonitriles. Clin Nucl Med 13:77–81

    PubMed  CAS  Google Scholar 

  • Taillefer R, Boucher Y, Potvin C, Lambert R (1992) Detection and localization of parathyroid adenomas in patients with hyperparathyroidism using a single radionuclide imaging procedure with technetium-99m-sestamibi (double-phase study). J Nucl Med 33:1801–1807

    PubMed  CAS  Google Scholar 

  • Tatum JL, Jesse RL, Kontos MC, Nicholson CS, Schmidt KL, Roberts CS, Ornato JP (1997) Comprehensive strategy for the evaluation and triage of the chest pain patient. Ann Emerg Med 29: 116–125

    PubMed  CAS  Google Scholar 

  • United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc 99m sestamibi injection. United States Pharmacopeia, p 1863

    Google Scholar 

  • Van Duzee BF, Bugaj JE (1981) The effect of total technetium concentration on the performance of a skeletal imaging agent. Clin Nucl Med 6(Suppl):P148

    Google Scholar 

  • Villanueva-Meyer J, Mena I, Narahara KA (1990) Simultaneous assessment of left ventricular wall motion and myocardial perfusion with technetium-99m-methoxyisobutyl isonitrile at stress and rest in patients with angina: comparison with thallium-201 SPECT. J Nucl Med 31:457–463

    PubMed  CAS  Google Scholar 

  • Wackers FJTh, Berman DS, Maddahi J, Watson DD, Beller GA, Strauss HW, Boucher CA, Picard M, Holman BL, Fridrich R, Inglese E, Delaloye B, Bischof-Delaloye A, Camin L, McKusick K (1989) Technetium-9 9m hexakis 2-methoxy isobutyl isonitrile: Human bio distribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med 30:301–311

    PubMed  CAS  Google Scholar 

  • Wei JP, Burke GJ, Mansberger AR Jr (1992) Prospective evaluation of the efficacy of technetium-99m-sestamibi and iodine-123 radionuclide imaging of abnormal parathyroid glands. Surgery 112:1111–1117

    PubMed  CAS  Google Scholar 

References

  • Cuocolo A, Nicolai E, Pace L, Nappi A, Sullo P, Cardei S, Argenziano L, Ell PJ, Salvatore M (1996) Technetium-99m-labeled tetrofosmin myocardial tomography in patients with coronary artery disease: comparison between adenosine and dynamic exercise stress testing. J Nucl Cardiol 3:194–203

    PubMed  CAS  Google Scholar 

  • Deutsch E, Glavan KA, Sodd VJ, Nishiyama H, Ferguson DL, Lukes SJ (1981) Cationic Tc-99m complexes as potential myocardial imaging agents. J Nucl Med 22:897–907

    PubMed  CAS  Google Scholar 

  • Deutsch E, Ketring AR, Libson K, Vanderheyden J-L, Hirth WJ (1989) The Noah’s ark experiment: species dependent biodistributions of cationic 99mTc complexes. Int J Rad Appl Instrum 16:191–232

    CAS  Google Scholar 

  • European Commission (1999) Radiation protection 109, guidance on diagnostic reference levels (DRLs) for medical exposures. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • He Z-X, Iskandrian AS, Gupta NC, Verani MS (1997) Assessing coronary artery disease with dipyridamole technetium-99m-tetrofosmin SPECT: a multicenter trial. J Nucl Med 38:44–48

    PubMed  CAS  Google Scholar 

  • Heo J, Cave V, Wasserleben V, Iskandrian AS (1994) Planar and tomographic imaging with technetium 99m-labeled tetrofosmin: correlation with thallium 201 and coronary angiography. J Nucl Cardiol 1:317–324

    PubMed  CAS  Google Scholar 

  • Hesse B, Tagli K, Cuocolo A et al (2005) EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 32:855–897

    PubMed  CAS  Google Scholar 

  • Higley B, Smith FW, Smith T, Gemmell HG, Gupta PD, Gvozdanocic DV, Graham D, Hinge D, Davidson J, Lahiri A (1993) Technetium-99m-l,2-bis[bis(2-ethoxyethyl)phosphino]ethane: human bio distribution, dosimetry and safety of a new myocardial perfusion imaging agent. J Nucl Med 34:30–38

    PubMed  CAS  Google Scholar 

  • International Commission on Radiological Protection (1991) Technetium-labeled MIBI In: Annals of the ICRP, Radiological protection in biomedical research. ICRP publication 62, vol. 22, no. 3. Pergamon, Oxford, pp 21–24

    Google Scholar 

  • Jain D, Wackers FJT, Mattera J, McMahon M, Sinusas AJ, Zaret BL (1993) Biokinetics of technetium-99m-tetrofosmin: myocardial perfusion imaging agent: implications for a one-day imaging protocol. J Nucl Med 34:1254–1259

    PubMed  CAS  Google Scholar 

  • Kelly JD, Forster AM, Higley B, Archer CM, Booker FS, Canning LR, Chiu KW, Edwards B, Gill HK, McPartlin M, Nagle KR, Latham IA, Pickett RD, Storey AE, Webbon PM (1993) Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J Nucl Med 34:222–227

    PubMed  CAS  Google Scholar 

  • Matsunari I, Fujino S, Taki J, Senma J, Aoyama T, Wakasugi T, Hirai J-I, Saga T, Yamamoto S, Tonami N (1997) Quantitative rest technetium-99m tetrofosmin imaging in predicting functional recovery after revascularization: comparison with rest-re distribution thallium-201. J. Am Coll Cardiol 29:1226–1233

    PubMed  CAS  Google Scholar 

  • Nycomed Amersham (1998) Product monograph for the Myoview kit for the preparation of technetium Tc-99m tetrofosmin for injection. Nycomed Amersham, Buckinghamshire.

    Google Scholar 

  • Platts EA, North TL, Pickett RD, Kelly JD (1995) Mechanism of uptake of technetium-tetrofosmin. I: uptake into isolated adult rat ventricular myocytes and subcellular localization. J Nucl Cardiol 2:317–326

    PubMed  CAS  Google Scholar 

  • Sridhara b, Sochor H, Rigo P, Braat SH, Itti R, Marrinez-Duncker D, Cload P, Lahiri A (1994) Myocridial single-photon emission computed tomographic imaging with technetium-99m tetrofosmin: stress-rest imaging with same-day and separate-day rest imaging. J Nucl Cardiol 1:128–143.

    Google Scholar 

  • Takahashi N, Reinhardt CP, Marcel R, Leppo JA (1996) Myocardial uptake of 99mTc-tetrofosmin, sestamibi, and 201Tl in a model of acute coronary reperfusion. Circulation 94:2605–2613.

    PubMed  CAS  Google Scholar 

  • Tatum JL, Jesse RL, Kontos MC, Nicholsol CS, Schmidt KL, Roberts CS, Ornato JP (1997) Comprehensice strategy for the evaluation and triage of the chest pain patient. Ann Emerg Med 29:116–125

    PubMed  CAS  Google Scholar 

  • United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc 99m tetrofosmin injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1865

    Google Scholar 

  • Van Hemert FJ, van Eck-Smit BLF, Schimmel KJM (2001) A rapid and stable ITLC procedure for the determination of the radiochemical purity of 99mTc tetrofosmin. Nucl Med Commun 22:641–644.

    PubMed  Google Scholar 

  • Yoshioka J, Hasegawa S, Yamaguchi H, Tokita N, Paul AK, Xiuli M (1999) Left ventricular volumes and ejection fraction calculated from quantitative electrocardiographic-gated 99mTc-tetrofosmin myocardial SPECT. J Nucl Med 40:1693–1698.

    PubMed  CAS  Google Scholar 

References

  • Administration of Radioactive Substances Advisory Committee (1993) Technetium-labeled exame-tazime (HMPAO) (1993) In: Notes for guidance on the administration of radioactive substances to persons for purposes of diagnosis, treatment or research, Appendix 1, Part A, pp 22–30; and Administration of Radioactive Substances Advisory Committee — ARSAC. 13(a) ibidem: Investigations — Children and young persons (1993) In: Notes for guidance on the administration of radioactive substances to persons for purposes of diagnosis, treatment or research, Appendix 1, Part D, pp 34–35

    Google Scholar 

  • Amersham Healthcare (1995) Product information for the Ceretec kit for the preparation of tech-netium Tc-99m exametazime injection. Amersham Healthcare, UK

    Google Scholar 

  • Andersen AR, Friberg HH, Schmidt JF, Hasselbalch SG (1988) Quantitative measurements of cerebral blood flow using SPECT and 99mTc-D,L-HMPAO compared to xenon-133. J Cereb Blood Flow Metab 8(Suppl 1):S69–S81

    PubMed  CAS  Google Scholar 

  • Asenbaum S, Reinprecht A, Briicke T, Wenger S, Podreka I, Deecke L (1985) A study of acetazolamide-induced changes in cerebral blood flow using 99mTc-HM-PAO SPECT in patients with cerebrovascular disease. Neuroradiology 27:509–516

    Google Scholar 

  • Ballinger JR, Reid RH, Gulenchyn KY (1988) Radiochemical purity of [99mTc]HM-PAO. J Nucl Med 29:572–573 (letter)

    PubMed  CAS  Google Scholar 

  • Dormehl, IC, Oliver DW, Langen, K-J, Hugo N, Croft SA (1997) Technetium-99m-HMPAO, technetium-99m-ECD and iodine-123-IMP cerebral blood flow measurements with pharmacological interventions in primates. J Nucl Med 38:1897–1901

    PubMed  CAS  Google Scholar 

  • Ell PJ, DC Costa, ID Cullum, PH Jarritt, D Lui (1987) Ceretec rCBF atlas: the clinical application of rCBF imaging by SPECT: Amersham International, UK

    Google Scholar 

  • Council of Europe (2005) Technetium 99mTc exametazime injection. In: European Pharmacopeia 5.0, monograph no 1925. Council of Europe, Maisonneuve, Sainte-Ruffine, p 1214

    Google Scholar 

  • Heiss W-D (1983) Flow thresholds for functional and morphological damage of brain tissue. Stroke 14:329–331

    PubMed  CAS  Google Scholar 

  • Heiss W-D, Herholz K, Podreka I, Neubauer I, Pietrzyk U (1990) Comparison of 99mTc-HM-PAO SPECT with 18F-fluoromethane PET in cerebrovascular disease. J Cereb Blood Flow Metab 10:687–697

    PubMed  CAS  Google Scholar 

  • Holm S, Andersen AR, Vorstrup S, Lassen NA, Paulson OB, Holmes RA (1985) Dynamic SPECT of the brain using a lipophilic technetium-99m complex, PnAO. J Nucl Med 26:1129–1134

    PubMed  CAS  Google Scholar 

  • Holman BL, Johnson KA, Gerada B, Carvalho PA, Satlin A (1992) The scintigraphic appearance of Alzheimer’s disease: A prospective study using technetium-99m-HM-PAO SPECT. J Nucl Med 33:181–185

    PubMed  CAS  Google Scholar 

  • Holmes RA, Chaplin SB, Royston KG, Hoffmann TJ, Volkert WA (1985) Cerebral uptake and retention of 99mTc-hexamethyl-propyleneamine oxime (99mTc-HM-PAO). J Nucl Med Commun 6:443–447

    CAS  Google Scholar 

  • International Commission on Radiological Protection (1991) Technetiurn-labelled HM-PAO (Ceretec) In: Annals of the ICRP, Radiological protection in biomedical research, ICRP publication 62, vol. 22., no. 3. Pergamon, Oxford, pp 11–13

    Google Scholar 

  • Lassen NA (1966) The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localized within the brain. Lancet 2:1113–1115

    PubMed  CAS  Google Scholar 

  • Lassen NA, Andersen AR (1988) Technetium-99m compounds for measurement of cerebral blood flow [reply]. J Nucl Med 29:1664–1465

    Google Scholar 

  • Lassen NA, Sperling B (1993) Hyperfixation of HM-PAO in subactute ischemic stroke leading to spuriously high estimates of cerebral blood flow by SPECT. Stroke 24:193–194

    PubMed  Google Scholar 

  • Lassen NA, Andersen AR, Friberg H, Neirinckx RD (1987) Technetium-99m-HM-PAO as a tracer of cerebral blood flow distribution: A kinetic analysis. J Cereb Blood Flow Metab 7(Suppl 1):S535

    Google Scholar 

  • Lassen NA, Andersen AR, Friberg L, Paulson OB (1988) The retention of 99mTc-D,L-HM-PAO in the human brain after intracarotid bolus injection: A kinetic analysis. J Cereb Blood Flow Metab 8(Suppl 1):S13–S22

    PubMed  CAS  Google Scholar 

  • Leonard JP, Nowotnik DP, Neirinckx RD (1986) Technetium-99m D,L-HM-PAO: a new radiophar-maceutical for imaging regional brain perfusion using SPECT — a comparison with iodine-123 HIPDM. J Nucl Med 27:1819–1823

    PubMed  CAS  Google Scholar 

  • Meyer JY, Thomson D, Mena I, Marcus CS (1990) Lacrimal gland dosimtery for the brain imaging agent 99mTc-HMPAO. J Nucl Med 31:1237–1239

    Google Scholar 

  • Moretti JL, Defer G, Cinotti L, Cesaro P, Degos JD, Vigneron N, Ducassou D, Holman BL (1990) “Luxury perfusion” with 99mTc-HM-PAO and 123I-IMP SPECT imaging during the subacute phase of stroke. Eur. J Nucl Med 16:17–22

    PubMed  CAS  Google Scholar 

  • Murase K, Tanada S, Fujita H, Sakaki S, Hamamoto K (1992) Kinetic behavior of Tc-99m HM-PAO in the human brain and quantification of cerebral blood flow using dynamic SPECT. J Nucl Med 33:135–143

    PubMed  CAS  Google Scholar 

  • Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Pickett RD, Holmes RA, Volkert WA, Forster AM, Weisner PS, Mariott JA, Chaplin SB (1987) Technetium-99m D,L-HM-PAO: a new radio-pharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 28:191–202

    PubMed  CAS  Google Scholar 

  • Neirinckx RD, Burke JF, Harrison RC, Forster AM, Andersen AR, Lassen NA (1988) The retention mechanism of technetium-99m-HMPAO: intracellular reaction with glutathione. J Cereb Blood Flow Metab 8(Suppl 1):S4–S12

    PubMed  CAS  Google Scholar 

  • Podreka I, Suess E, Goldenberg G, Brücke T, Müller C, Lang W, Neirinckx RD, Deecke L (1987) Initial experience with technetium-99m-HM-PAO brain SPECT. J Nucl Med 28:1657–1666

    PubMed  CAS  Google Scholar 

  • Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radiopharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–270, 272–289

    Google Scholar 

  • Sharp PF, Smith FW, Gemmel HG, Lyall D, Evans NTS, Gvozdanovic D, Davidson J, Tyrrell DA, Pickett RD, Neirinckx RD (1986) Technetium-99m HM-PAO stereoisomers as potential agents for imaging regional cerebral blood flow: Human volunteer studies. J Nucl Med 27:171–177

    PubMed  CAS  Google Scholar 

  • Troutner DE, Volkert WA, Hoffmann TJ, Holmes RA (1984) A neutral lipophilic complex of 99mTc with a multidentate amine oxime. Int J Appl Radiat Isot 35:467–470

    PubMed  CAS  Google Scholar 

  • United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc 99m exametazime injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1855

    Google Scholar 

References

  • Brass LM, Walovitch RC, Joseph JL, Leveille J, Marchand L, Hellman RS, Tikovsky RS, Masdeu JC, Hall KM, Van Heertum RL (1994) The role of single photon emission computed tomography brain imaging with 99mTc-bicisate in the localization and definition of mechanism of ischemic stroke. J Cereb Blood Flow Metab 14(Suppl 1):S91–S98

    PubMed  Google Scholar 

  • Cheesman EH, Blanchette MA, Ganey MV, Maheu LJ, Miller SJ, Watson AD (1988) Technetium-99m ECD: Ester-derivatized diaminedithiol Tc complexes for imaging brain perfusion. J Nucl Med (Abstr) 29:788

    Google Scholar 

  • Devous MD, Payne JK, Lowe JL, Leroy RF (1993) Comparison of technetium-99m-ECD to xenon-133 SPECT in normal controls and in patients with mild to moderate regional cerebral blood flow abnormalities. J Nucl Med 34:754–761

    PubMed  Google Scholar 

  • Dormehl, IC, Oliver DW, Langen, K-J, Hugo N, Croft SA (1997) Technetium-99m-HMPAO, technetium-99m-ECD and iodine-123-IMP cerebral blood flow measurements with pharmacological interventions in primates. J Nucl Med 38:1897–1901

    PubMed  CAS  Google Scholar 

  • DuPont Merck Pharmaceutical (1995) Product monograph Neurolite, issued by DuPont Merck Pharmaceutical, Wilmington, Del.

    Google Scholar 

  • Friberg L, Andersen AR, Lassen NA, Holm S, Dam M, (1994) Retention of 99mTc-bicisate in the human brain after intracarotid injection. J Cereb Blood Flow Metab 14(Suppl 1):S19–S27

    PubMed  CAS  Google Scholar 

  • Holman BL, Hellman RS, Goldsmith SJ, Mean IG, Leveille J, Gherardi PG, Moretti JL, Bischof-Delaloye A, Hill TC, Rigo PM, Van Heertum RL, Ell PJ, Büll U, DeRoo MC, Morgan RA (1989) Bio-distribution, dosimetry and clinical evaluation of Tc-99m ethyl cysteinate dimer (ECD) in normal subjects and in patients with chronic cerebral infarction. J Nucl Med 30:1018–1024

    PubMed  CAS  Google Scholar 

  • International Commission on Radiological Protection (1991) Technetium-labeled HM-PAO (Ceretec) In: Annals of the ICRP, radiological protection in biomedical research. ICRP publication 62, vol. 22, no. 3. Pergamon, Oxford, pp 11–13

    Google Scholar 

  • Lassen NA, Sperling B (1994) 99mTc-Bicisate reliably images CBF in chronic brain diseases but fails to show reflow hyperemia in subacute stroke: report of a multicenter trial of 105 cases comparing 133-Xe and 99mTc-bicisate (ECD, Neurolite) measured by SPECT on the same day. J Cereb Blood Flow Metab 14(Suppl 1):S44–S48

    PubMed  Google Scholar 

  • Leveille J, Demonceau G, DeRoo MC, Rigo PM, Talliefer R, Morgan RA, Kupranick D, Walovitch RC (1989) Characterisation of technetium-99m-L,L-ECD for brain perfusion imaging. Part 2: biodistribution and brain imaging in humans. J Nucl Med 30:1902–1910

    PubMed  CAS  Google Scholar 

  • Moretti JL, Defer G, Cinotti L, Cesaro P, Degos JD, Vigneron N, Ducassou D, Holman BL (1990) “Luxury perfusion” with 99mTc-HM-PAO and 123I-IMP SPECT imaging during the subacute phase of stroke. Eur. J Nucl Med 16:17–22

    PubMed  CAS  Google Scholar 

  • Tsuchida T, Yonekura Y, Sadato N, Iwasaki Y, Tamaki N, Konishi J, Fujita T, Matoba N, Nishizawa S, Magata Y (1992) Brain perfusion SPECT with [Tc-99]-L,L-ethyl cysteinate dimer (ECD) in comparison with regional cerebral blood flow measured by PET: underestimation in the high flow range. J Nucl Med 33 (Abstr):966

    Google Scholar 

  • United States Pharmacopeial Convention (2005) USP 28 official monographs, technetium-Tc99m bicisate injection, United States pharmacopeia. United States Pharmacopeial Convention, p 1853

    Google Scholar 

  • Vallabhajosula S, Zimmermann RE, Picard M, Stritzke P, Mena I, Hellman RS, Tikovsky RS, Stabin MG, Morgan RA, Goldsmith SJ (1989) Technetium-99m ECD: a new brain imaging agent: in vivo kinetics and biodistribution studies in normal human subjects. J Nucl Med 30:599–604

    PubMed  CAS  Google Scholar 

  • Verbeke K, Boonen C, Verbruggen AM (1997) Usefulness of residual fractions of L,L-ethylcystei-nate dimer (Neurolite) for the preparation of 99mTc-L,L-ethylcysteinate dimer. Nucl Med Commun 18:535–539

    PubMed  CAS  Google Scholar 

  • Walovitch RC, Makuch J, Knapik G, Watson AD, Williams SJ (1988) Brain retention of 99mTc-ECD is related to in vivo metabolism. J Nucl Med 29 (Abstr):747

    Google Scholar 

  • Walovitch RC, Hill TC, Garrity ST, Cheesman EH, Burgess BA, O’Leary DH, Watson AD, Ganey MV, Morgan RA, Williams SJ (1989) Characterisation of 99mTc-L,L-ECD for brain perfusion imaging. Part 1: pharmacology of 99mTc-L, L-ECD in non-human primates. J Nucl Med 30:1892–1901

    PubMed  CAS  Google Scholar 

  • Walovitch RC, Franceschi M, Picard M, Cheesman EH, Hall KM, Makuch J, Watson MW, Zimmerman RE, Watson AD, Ganey MV, Williams SJ, Holman BL (1991) Metabolism of 99mTc-L,L-ethyl cysteinate dimer in healthy volunteers. Neuropharmacology 30:283–292

    PubMed  CAS  Google Scholar 

References

  • Arndt JW, van der Stays Veer A, Blok D, Griffoen G, Verspaget HW, Lamers CB, Pauwels EK (1993) Prospective comparative study of technetium-99m-WBCs and indium-111-granulocytes for the examination of patients with inflammatory bowel disease. J Nucl Med 34:1052–1057

    PubMed  CAS  Google Scholar 

  • Bowring CS (1986) Imaging and quantitative scanning. In: Lewis SM, Baily RJ (eds) Radionuclides in hematology. Churchill Livingstone, Edinburgh, pp 151–172

    Google Scholar 

  • Council of Europe (2005) Technetium 99mTc exametazime injection. In: European pharmacopeia 5.0, monograph no 1925. Council of Europe, Maisonneuve, Sainte-Ruffine, p 1214

    Google Scholar 

  • Danpure HJ, Osman S, Carroll MJ (1988) The development of a clinical protocol for the radiolabelling of mixed leukocytes with 99mTc-hexamethylpropyleneamine oxime. Nucl Med Commun 9:465–475

    PubMed  CAS  Google Scholar 

  • Devillers A, Moisan A, Jean S, Arvieux C, Bourguet P (1995) Technetium-99m hexamethylpropylene amine oxime leukocyte scintigraphy for the diagnosis of bone and joint infections: a retrospective study in 116 patients. Eur J Nucl Med 22:302–307

    PubMed  CAS  Google Scholar 

  • GE Healthcare (2005) Product information for the Ceretec kit for the preparation of technetium Tc-99m exametazime injection. GE Healthcare, UK

    Google Scholar 

  • International Commission on Radiological Protection (1987) Technetium-labelled white blood cells (leukocytes). In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, bio-kinetic models and data. ICRP publication 53, vol. 18, no. 1–4. Pergamon, Oxford, pp 231–232

    Google Scholar 

  • International Commission on Radiological Protection (1991) Technetium-labelled white blood cells (leukocytes). In: Annals of the ICRP, radiological protection in biomedical research. ICRP publication 62, vol. 22, no. 3. Pergamon, Oxford, pp 25–28

    Google Scholar 

  • Kelbaek H, Fogh J, Gjorup T, Bfllow K, Vestergaard B (1985) Scintigraphic demonstration of subcutaneous abscesses with 99mTc-labelled leukocytes. Eur J Nucl Med 10:302–303

    PubMed  CAS  Google Scholar 

  • Lantto EH, Lantto TJ, and Vorne M (1991) Fast diagnosis of abdominal infections and inflammations with technetium-99m-HMPAO labeled leukocytes. J. Nucl Med 32:2029–2034

    PubMed  CAS  Google Scholar 

  • Lantto T, Kaukonen J-P, Kokkola A, Laitinen R, Vorne M (1992) Tc-99m HMPAO labeled leukocytes superior to bone scan in the detection of osteomyelitis in children. Clin Nucl Med 17:7–10

    PubMed  CAS  Google Scholar 

  • Mortelmans L, Malbrain S, Stuyck J, De Backker C, Heynen MJ, Boogaerts M, De Roo M, Verbruggen A (1989) In vitro and in vivo evaluation of granulocyte labelling with (99mTc)D,L-HMPAO. J Nucl Med 30:2022–2028

    PubMed  CAS  Google Scholar 

  • Peters AM, Danpure HJ, Osman S, Hawker RJ, Henderson BL, Hodgson HJ, Kelly JD, Neirinckx RD, Lavender JP (1986) Clinical experience with 99mTc-HMPAO for labeling leukocytes and imaging inflammation. Lancet 25:946–949

    Google Scholar 

  • Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radiopharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–289

    Google Scholar 

  • Roddie ME, Peters AM, Danpure HJ, Osman S, Henderson BL, Lavender PJ, Carrol MJ, Neirinckx RD, Kelly JD (1988) Inflammation: imaging with Tc-99m HMPAO-labelled leukocytes. Radiology 166:767–772

    PubMed  CAS  Google Scholar 

  • Segall GM, Lang HV, Chaovapong W (1994) In vitro evaluation of white blood cell labelling with 99mTc-radiopharmaceuticals. Nucl Med Commun 15:845–849

    PubMed  CAS  Google Scholar 

  • Skretting A, Benestad HB, Sundrehagen H (1988) Whole-body distribution of 99mTc labelled autologous human granulocytes and radiation dose to cells and organs. Eur J Nucl Med 14:1–7

    PubMed  CAS  Google Scholar 

  • United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc 99m exametazime injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1855

    Google Scholar 

References

  • Ancri D, Lonchampt M, Basset J (1977) The effect of tin on the tissue distribution of Tc-99m sodium pertechnetate. Radiology 124:445–450

    PubMed  CAS  Google Scholar 

  • Bevan JA, Tofe AJ, Benedict JJ, Francis MD, Barnett BL (1980) Tc-99m HMDP (hydroxymethylene diphosphonate): a radiopharmaceutical for skeletal and acute myocardial infarct imaging. II. Comparison of Tc-99m hydroxymethylene diphosphonate (HMDP) with other technetium-labeled bone imaging agents in a canine model. J Nucl Med 21:967–970

    PubMed  CAS  Google Scholar 

  • Bonte FJ, Parkey RW, Graham KD, Moore J, Stokely EM (1974) A new method for radionuclide imaging of myocardial infarcts. Radiology 110:473–474

    PubMed  CAS  Google Scholar 

  • Buja LM, Tofe AJ, Kulkarni PV et al (1977) Sites and mechanisms of localization of technetium-99m phosphorus radiopharmaceuticals in acute myocardial infarcts and other tissues. J Clin Invest 60:724–740

    PubMed  CAS  Google Scholar 

  • Chacko AK, Gordon DH, Bennett JM et al (1977) Myocardial imaging with Tc-99m pyrophosphate in patients on Adriamycin treatment for neoplasia. J Nucl Med 18:680–683

    PubMed  CAS  Google Scholar 

  • Cis International (1985a) Product information for the TCK-7 kit (AngioCis) for the preparation of technetium Tc-99m (Sn) pyrophosphate (PYP). Cis International, France

    Google Scholar 

  • Cis International (1985b) Product information for the TCK-11 kit (HematoCis) for the preparation of technetium Tc-99m red blood cells (RBC). Cis International, France

    Google Scholar 

  • Cohen Y, Perez R, Henry R, Panneciere C (1972) Use of technetium 99m-labelled sodium pyrophosphate in skeletal scintigraphy. C R Acad Sci Hebd Seances Acad Sci D 275:1719–1721

    PubMed  CAS  Google Scholar 

  • Council of Europe (2005) Technetium 99mTc tin pyrophosphate injection. In: European pharmacopeia, monograph 129. Council of Europe, Maisonneuve, Sainte-Ruffine, p 1230

    Google Scholar 

  • Cowley MJ, Mantle JA, Rogers WJ et al (1977) Technetium stannous pyrophosphate myocardial scintigraphy: reliability and limitations in assessment of acute myocardial infarction. Circulation 56:192–198

    PubMed  CAS  Google Scholar 

  • Crawford JA, Gumerman LW (1978) Alteration of body distribution of 99mTc-pyrophosphate by radiographic contrast material. Clin Nucl Med 3:305–307

    PubMed  CAS  Google Scholar 

  • Davis MA, Holman BL, Carmel AN (1976) Evaluation of radiopharmaceuticals sequestered by acutely damaged myocardium. J Nucl Med 17:911–917

    PubMed  CAS  Google Scholar 

  • Eckelman WC, Volkert WA (1982) In vivo chemistry of 99mTc-chelates. Int J Appl Radiat Isot 33:945–951

    PubMed  CAS  Google Scholar 

  • Fletcher JW, Solaric Georges E, Henry RE, Donato RM (1973) Evaluation of 99mTc-pyrophosphate as a bone imaging agent. Radiology 467–469

    Google Scholar 

  • Hegge FN, Hamilton GW, Larson SM et al (1978) Cardiac chamber imaging: a comparison of red blood cells labelled with Tc-99m in vitro and in vivo. J Nucl Med 19:129–134

    PubMed  CAS  Google Scholar 

  • Henne W, Pixberg H-U, Pfannenstiel P (1975) Technetiumpolyphosphat und Technetiumdipho-sphonat — Eine vergleichende Untersuchung [in German]. Nucl Med 14:83–90

    CAS  Google Scholar 

  • Hladik WB, Nigg KK, Rhodes BA (1982) Drug-induced changes in the biologic distribution of radiopharmaceuticals. Sem Nucl Med 12:184–218

    CAS  Google Scholar 

  • Hladik WB, Ponto JA, Lentle BC, Laven DL (1987) Iatrogenic alterations in the biodistribution of radiotracers as a result of drug therapy: reported instances. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 193–202

    Google Scholar 

  • International Commission on Radiological Protection (1987a) Technetium-labelled phosphates and phosphonates. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 213–215

    Google Scholar 

  • International Commission on Radiological Protection (1987b) Technetium-labelled erythrocytes. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 209–210

    Google Scholar 

  • International Commission on Radiological Protection (1991) Technetium-labelled denatured erythrocytes. In: Annals of the ICRP, radiological protection in biomedical research. ICRP publication 62, vol 22, no 3. Pergamon, Oxford, pp 25–28

    Google Scholar 

  • Kelly RJ, Chilton HM, Hackshaw BT, Ball JD, Watson NE, Kahl FR, Cowan RJ (1979) Comparison of Tc-99m pyrophosphate and Tc-99m methylene diphosphonate in acute myocardial infarction: concise communication. J Nucl Med 20:402–406

    PubMed  CAS  Google Scholar 

  • Kornberg A (1962) On the metabolic significance of phosphorolytic and pyrophosphorolytic reactions. In: Kasha M and Pullman B (eds) Horizons in biochemistry. Academic, New York, pp 251–264

    Google Scholar 

  • Kowalsky RJ, Dalton DR (1981) Technical problems associated with the production of technetium [99mTc] tin(II) pyrophophate kits. Am J Hosp Pharm 38:1722–1726

    PubMed  CAS  Google Scholar 

  • Krishnamurthy GT, Huebotter RJ, Walsh CF, Taylor JR, Kehr MD, Tubis M, Blahd WH (1975) Kinetics of 99mTc-labeled pyrophosphate and polyphosphate in man. J Nucl Med 16:109–115

    PubMed  CAS  Google Scholar 

  • Krogsgaard OW (1976) Radiochemical purity of various Tc-99m-labelled bone scanning agents. Eur J Nucl Med 1:15–17

    PubMed  CAS  Google Scholar 

  • Kuntz D, Rain JD, Lemaire V, Sainte-Croix A, Ryckewaert A (1975) Diagnostic value of bone scintigraphy with technetium pyrophosphate. Study of 250 patients. Rev Rhum Mai Osteoartic 42:19–24

    CAS  Google Scholar 

  • Mallinckrodt Medical (1993) Product information for TechneScan PYP for the preparation of (Sn) pyrophosphate (PYP) injection solution. Mallinckrodt Medical, The Netherlands

    Google Scholar 

  • Pavel DG, Zimmer AM, Patterson VN (1977) In vivo labeling of red blood cells with 99mTc: a new approach to blood pool visualization. J Nucl Med 18:305–308

    PubMed  CAS  Google Scholar 

  • Porter WC, Dees SM, Freitas JE, Dworkin HJ (1983) Acid-citrate-dextrose compared with heparin in the preparation of in vivo/in vitro technetium-99m red blood cells. J Nucl Med 24:383–387

    PubMed  CAS  Google Scholar 

  • Rampon S, Bussiere JL, Prin P, Sauvezie B, Leroy V, Missioux D et al (1974) 250 studies of bone radioisotope scanning by tin pyrophosphate labeled with technetium 99m. Analytical and clinical study. Rev Rhum Mai Osteoartic 4:745–751

    Google Scholar 

  • Rudd TG, Allen DR, Hartnett DE (1977) Tc-99m methylene diphosphonate versus Tc-99m pyrophosphate: biologic and clinical comparison. J Nucl Med 18:872–876

    PubMed  CAS  Google Scholar 

  • Russell CD, and Cash AG (1979) Complexes of technetium with pyrophosphate, etidronate, and medronate. J Nucl Med 20:532–537

    PubMed  CAS  Google Scholar 

  • Russell RGG, Mühlbauer RC, Bisaz S et al (1970) The influence of pyrophosphate, condensed phosphates, phosphonates and other phosphate compounds on the dissolution of hydroxyapatite in vitro and on bone resorption induced by parathyroid hormone in tissue culture and in thyro-parathyroidectomized rats. Calcif Tissue Res 6:183–196

    PubMed  CAS  Google Scholar 

  • Saha GB, Boyd CM (1978) Plasma protein-binding of 99mTc-pyrophosphate. Int. J Nucl Med Biol 5:236–239

    PubMed  CAS  Google Scholar 

  • Srivastava SC, Meinken G, Smith TD, Richards P (1977) Problems associated with stannous 99mTc-radiopharmaceuticals. Int J Appl Radiat Isot 28:83–95

    PubMed  CAS  Google Scholar 

  • Subramanian G, McAfee JG, Bell EG, Blair RJ, Mara RE, Relston PH (1972) 99mTc-labeled polyphos-phates as skeletal imaging agent. Radiology 102:701–704

    PubMed  CAS  Google Scholar 

  • Subramanian G, McAfee JG, Blair RJ, Kallfelz FA, Thomas FD (1975) Technetium-99m methylene diphosphonate — a superior agent for skeletal imaging: comparison with other technetium complexes. J Nucl Med 16:744–755

    PubMed  CAS  Google Scholar 

  • Tatum JL, Burke TS, Hirsch JI et al (1983) Pitfall to modified in vivo method of technetium-99m red blood cell labeling — iodinated contrast media. Clin J Nucl Med 8:585–587

    CAS  Google Scholar 

  • Thrall JH, Freitas JE, Swanson D, Rogers WL, Clare JM, Brown ML, Pitt B (1978) Clinical comparison of cardiac blood pool visualization with technetium 99m red blood cells labeled in vivo and with technetium 99m human serum albumin. J Nucl Med 19:796–803

    PubMed  CAS  Google Scholar 

  • United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc 99m pyrophosphate injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1862

    Google Scholar 

  • Weber DA, Makler PT Jr, Watson EE, Coffey JL, Thomas SR, London J (1989) Radiation absorbed dose from technetium-99m-labeled bone imaging agents: MIRD dose estimate report no 13. J Nucl Med 30:1117–1122

    PubMed  CAS  Google Scholar 

  • Willerson JT, Parkey RW, Bonte FJ, et al. (1975) Technetium-99m stannous pyrophosphate myocardial scintigrams in patients with chest pain of varying etiology. Circulation 51:1046–1052

    PubMed  CAS  Google Scholar 

  • Willerson JT, Parkey RW, Buja LM et al (1977) Are 99mTc-stannous pyrophosphate myocardial scintigrams clinically useful? Clin Nucl Med 2:137–145

    Google Scholar 

  • Zaret BL, Di Cola VC, Donabedian RK, Puri S, Wolfson S, Freedman GS, Cohen LS (1976) Dual radionuclide study of myocardial infarction: relationships between myocardial uptake of potassium-43, technetium-99m stannous pyrophosphate, regional myocardial blood flow and creatine phosphokinase depletion. Circulation 53:422–428

    PubMed  CAS  Google Scholar 

  • Zimmer AM, Pavel DG, Karesh SM (1979) Technical parameters of in vivo red blood cell labelling with technetium-99m. Nuklearmedizin 18:241–245

    PubMed  CAS  Google Scholar 

References

  • Ackerhalt RE, Blau M, Bakshi S, Sondel JA (1974) A comparative study of three 99mTc-labeled phosphorus compounds and 18F-fluoride for skeletal imaging. J Nucl Med 15:1153–1157

    PubMed  CAS  Google Scholar 

  • Ancri D, Lonchampt M, Basset J (1977) The effect of tin on the tissue distribution of Tc-99m sodium pertechnetate. Radiology 124:445–450

    PubMed  CAS  Google Scholar 

  • Bevan JA, Tofe AJ, Benedict JJ, Francis MD, Barnett BL (1980) Tc-99m HMDP (hydroxymethylene diphosphonate): a radiopharmaceutical for skeletal and acute myocardial infarct imaging. I. Synthesis and distribution in animals. J Nucl Med 21:961–966

    PubMed  CAS  Google Scholar 

  • Buell U, Kleinhans E, Zorn-Bopp E, Reuschel W, Muenzing W, Moser EA, Seiderer M (1982) A comparison of bone imaging with Tc-99m DPD and Tc-99m MDP: concise communication. J Nucl Med 23:214–217

    PubMed  CAS  Google Scholar 

  • Byun HH, Rodman SG, Chung KE (1976) Soft tissue concentration of Tc-99m phosphates associated with injection of iron dextran complex. J Nucl Med 17:374–375

    PubMed  CAS  Google Scholar 

  • Callahan RJ, Froelich JW, McKusick KA, Leppo J, Strauss WH (1982) A modified method for the in vivo labeling of red blood cells with Tc-99m: concise communication. J Nucl Med 23:315–318

    PubMed  CAS  Google Scholar 

  • Castronovo FP, Callahan RJ (1972) New bone scanning agent: 99mTc-labeled 1-hydroxyethylidene-L;L-disodium phosphonate. J Nucl Med 13:823–827

    PubMed  CAS  Google Scholar 

  • Chaudhuri TK (1976) The effect of aluminium and pH on altered body distribution of Tc-99m EHDP. Int J Nucl Med Biol 3:37

    PubMed  CAS  Google Scholar 

  • Conklin JJ, Alderson PO, Zizic TM et al (1983) Comparison of bone scan and radiograph sensitivity in the detection of steroid-induced ischemic necrosis of bones. Radiology 147:221–226

    PubMed  CAS  Google Scholar 

  • Council of Europe (2005) Technetium 99mTc medronate injection. In: European Pharmacopeia 5.0, monograph no 641. Council of Europe, Maisonneuve, Sainte-Ruffine, p 1219

    Google Scholar 

  • Davis MA, Jones AG (1976) Comparison of 99mTc-labeled phosphate and phosphonate agents for skeletal imaging. Semin Nucl Med 6:19–31

    PubMed  CAS  Google Scholar 

  • Domstad PA, Coupal JJ, Kim EE, Blake JS, DeLand FH (1980) 99mTc-hydroxy methane diphosphonate: a new bone imaging agent with a low tin content. Radiology

    Google Scholar 

  • Dunson GL, Stevenson JS, Cole CM, Mellor MK, Hosain F (1973) Preparation and comparison of technetium-99m diphosphonate, polyphosphate and pyrophosphate in nuclear bone imaging radiopharmaceuticals. Drug Intell Clin Pharm 7:470–474

    CAS  Google Scholar 

  • Fogelman I (1982) Diphosphonate bone scanning agents — current concepts. Eur J Nucl Med 7:506–509

    PubMed  CAS  Google Scholar 

  • Fogelman I, Pearson DW, Bessent RG, Tofe AJ, Francis MD (1981) A comparison of skeletal uptakes of three diphosphonates by whole-body retention: concise communication. J Nucl Med 22:880–883

    PubMed  CAS  Google Scholar 

  • Francis MD, Ferguson DL, Tofe AJ, Bevan JA, Michaels SE (1980) Comparative evaluation of three diphosphonates: in vitro adsorption (C14-labeled) and in vivo osteogenic uptake (Tc-99m complexed). J Nucl Med 21:1185–1189

    PubMed  CAS  Google Scholar 

  • Genant HK, Bautovich GJ, Singh M (1974) Bone seeking radio nucl ides: An in-vivo study of factors affecting skeletal uptake. Radiology 113:373–382

    PubMed  CAS  Google Scholar 

  • Godart G, Durez M, Bevilaqua M, Abramovici J, Robience Y (1986) Technetium-99 m MDP vs tech-netium-99m diearboxypropane diphosphonate. A clinical comparison in various pathologic conditions. Clin Nucl Med 11:92–97

    PubMed  CAS  Google Scholar 

  • Gray WR, Hickey D, Parkey RW, Bonte FJ, Roan P, Willerson JT (1979) In: Parkey RW, Bonte FJ, Buja LM, Willerson JT (eds) Qualitative blood pool imaging in clinical nuclear cardiology. Appleton-Century-Crofts, NY, pp 297–308

    Google Scholar 

  • Hale TI, Jucker A, Vgenopoulos K, Sauter B, Wacheck W, Bors L (1981) Clinical experience with a new bone seeking 99mTc-radiopharmaceutical. Nucl Compact 12:54–55

    Google Scholar 

  • Hladik WB, Nigg KK, Rhodes BA (1982) Drug-induced changes in the biologic distribution of radiopharmaceuticals. Semin Nucl Med 12:184–218

    PubMed  CAS  Google Scholar 

  • Hladik WB, Ponto JA, Lentle BC, Laven DL (1987) Iatrogenic alterations in the bio distribution of radiotracers as a result of drug therapy: reported instances. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 193–202

    Google Scholar 

  • Hughes SPF, Jeyasingh K, Lavender PJ (1975) Phosphate compounds in bone scanning. J Bone Joint Surg (Br) 57:214–216

    CAS  Google Scholar 

  • International Commission on Radiological Protection (1987a) Technetium-labelled phosphates and phosphonates. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 213–215

    Google Scholar 

  • International Commission on Radiological Protection (1987b) Technetium-labelled erythrocytes. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 209–210

    Google Scholar 

  • International Commission on Radiological Protection (1991) Technetium-labelled erythrocytes. In: Annals of the ICRP, radiological protection in biomedical research. ICRP publication 62, vol 22, no 3. Pergamon, Oxford, pp 25–28

    Google Scholar 

  • International Commission on Radiological Protection (1998) Technetium-labelled phosphates and phosphonates (1998) In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, addendum to ICRP 53, publication 80, vol 28, no 3. Pergamon, Oxford, p 75

    Google Scholar 

  • Jones AG, Francis MD, Davis MA (1976) Bone scanning: radionuclide reaction mechanism. Semin Nucl Med 6:3–18

    PubMed  CAS  Google Scholar 

  • Krishnamurthy GT, Tubis M, Endow JS, Singhi V, Walsh CF, Blahd WH (1974) Clinical comparison of the kinetics of 99mTc-labeled polyphosphate and diphosphonate. J Nucl Med 15:848–855

    PubMed  CAS  Google Scholar 

  • Krogsgaard OW (1976) Radiochemical purity of various Tc-99m-labeled bone scanning agents. Eur J Nucl Med 1:15–17

    PubMed  CAS  Google Scholar 

  • McAfee JG (1987) Radionuclide imaging in metabolic and systemic skeletal diseases. Semin Nucl Med 17:334–349

    PubMed  CAS  Google Scholar 

  • McRae J, Hambright P, Valk P, Bearden AJ (1976) Chemistry of Tc-99m tracers. II. In vitro conversion of tagged HEDP and pyrophosphate (bone seekers) into gluconate (renal agent). Effects of Ca and Fe(II) on in vivo distribution. J Nucl Med 17:208–211

    PubMed  CAS  Google Scholar 

  • Pauwels EKJ, Blom J, Camps JAJ, Hermans J, Rijke AM (1983) A comparison between the efficacy of 99mTc-MDP, 99mTc-DPD, 99mTc-HDP for the detection of bone metastases. Eur J Nucl Med 8:118–122

    PubMed  CAS  Google Scholar 

  • Pendergrass HP, Postsaid MS, Castronovo FP (1973) The clinical use of Tc-99m diphosphonate (HEDSPA). Radiol 107(3): 557–562

    CAS  Google Scholar 

  • Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radio-pharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 271–274

    Google Scholar 

  • Porter WC, Dees SM, Freitas JE, Dworkin HJ (1983) Acid-citrate-dextrose compared with heparin in the preparation of in vivo/in vitro technetium-99m red blood cells. J Nucl Med 24:383–387

    PubMed  CAS  Google Scholar 

  • Russell CD, Cash AG (1979) Complexes of technetium with pyrophosphate, etidronate, and medronate. J Nucl Med 20:532–537

    PubMed  CAS  Google Scholar 

  • Saha GB (1987) Normal biodistribution of diagnostic radiopharmaceuticals. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 3–19

    Google Scholar 

  • Saha GB (1998) Fundamentals of radiopharmacy, 4th edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Saha GB, Boyd CM (1979) A study of protein-binding of 99mTc-methylene diphosphonate in plasma. Int J Nud Med Biol 6:201–206

    CAS  Google Scholar 

  • Sahni M, Guenther HL, Fleish H, Collin P, Martin J (1993) Biphosphonates act on rat bone resorption through the mediation of osteoblasts. J Clin Invest 91:2004–2011

    PubMed  CAS  Google Scholar 

  • Schroth H-J, Hausinger F, Garth H, Oberhausen E (1984) Comparison of the kinetics of methylene diphosphonate (MDP) and dicarboxypropane diphosphonic acid (DPD), two radio-diagnostics for bone scintigraphy. Eur J Nucl Med 9:529–532

    PubMed  CAS  Google Scholar 

  • Schwarz A, Kloss G (1981) Technetium-99m DPD — a new skeletal imaging agent. J Nucl Med 22 (Abstr):7

    Google Scholar 

  • Schwarz A, Oberhausen E, Schroth HJ, Hale TJ (1991) Teceos. Scientific information on the labeling unit technetium-99m-3,3-diphosphono-l,2-propanedicarboxylic acid. Behring Diagnostika, Marburg, Germany

    Google Scholar 

  • Srivastava SC, Meinken G, Smith TD, Richards P (1977) Problems associated with stannous 99mTc-radiopharmaceuticals. Int J Appl Radiat Isot 28:83–95

    PubMed  CAS  Google Scholar 

  • Subramanian G, McAfee JG, Blair RJ, Mehter A, Connor T (1972) 99mTc-EHDP: a potential radio-pharmaceutical for skeletal imaging. J Nucl Med 13:947–950

    PubMed  CAS  Google Scholar 

  • Subramanian G, McAfee JG, Blair RJ, Kallfelz FA, Thomas FD (1975a) Technetium-99m methylene diphosphonate — a superior agent for skeletal imaging: comparison with other technetium complexes. J Nucl Med 16:744–755

    PubMed  CAS  Google Scholar 

  • Subramanian G, McAfee JG, Blair RJ (1975b) An evaluation of 99mTc-labeled phosphate compounds as bone imaging agents. In: Subramanian G, Rhodes BA, Cooper JF, Sodd VJ (eds) Radiopharmaceuticals. Society of Nuclear Medicine, New York, pp 319–328

    Google Scholar 

  • Tofe AJ, Francis MD (1972) In vitro optimization and organ distribution studies in animals with the bone scanning agent 99mTc-Sn-EHDP. J Nucl Med 13(Abstr):472

    Google Scholar 

  • Tofe AJ, Francis MD (1976) In vitro stabilization of a low tin bone imaging kit. J Nucl Med 16:414–422

    Google Scholar 

  • Tofe AJ, Bevan JA, Fawzi MB, Francis MD, Silberstein EB, Alexander GA, Gunderson DE, Blair K (1980) Gentisic acid: a new stabilizer for low tin skeletal imaging agents: concise communication. J Nucl Med 21:366–370

    PubMed  CAS  Google Scholar 

  • United States Pharmacopeial Convention (2005) United States pharmacopeia USP 28 official monographs: technetium Tc-99m medronate injection, technetium Tc-99m oxidronate injection, technetium Tc-99m etidronate injection. United States Pharmacopeial Convention, Rockville, Md.

    Google Scholar 

  • Van Duzee BF, Bugaj JE (1981) The effect of total technetium concentration on the performance of a skeletal imaging agent. Clin Nucl Med 6(Suppl):148

    Google Scholar 

  • Wang TST, Fawwaz RA, Johnson LJ, Mojdehi GE, Johnson PM (1980) Bone-seeking properties of Tc-99m carbonyl diphosphonic acid, dihydroxy-methylene diphosphonic acid, and monohydroxy-methylene diphosphonic acid: concise communication. J Nucl Med 21:767–770

    PubMed  CAS  Google Scholar 

  • Weber DA, Makler PT Jr, Watson EE, Coffey JL, Thomas SR, London J (1989) Radiation absorbed dose from technetium-99m-labeled bone imaging agents: MIRD dose estimate report no 13. J Nucl Med 30:1117–1122

    PubMed  CAS  Google Scholar 

  • Yano Y, McRae J, Van Dyke DC, Anger HO (1973) Technetium-99m-labeled stannous ethane-1-hydroxy-1-diphosphonate: a new bone scanning agent. J Nucl Med 14:73–78

    PubMed  CAS  Google Scholar 

  • Zimmer AM, Pavel DG (1978) Experimental investigations of the possible cause of liver appearance during bone scanning. Radiology 126:813–816

    PubMed  CAS  Google Scholar 

  • Zimmer AM, Pavel DG, Karesh SM (1979) Technical parameters of in vivo red blood cell labeling with Technetium-99m. Nuklearmedizin 18:241–245

    PubMed  CAS  Google Scholar 

References

  • Arnold RW, Subramanian G., McAfee JG, Blair RJ, Thomas FD (1975) Comparison of 99mTc complexes for renal imaging. J Nucl Med 16:357–367

    PubMed  CAS  Google Scholar 

  • Bingham JB, and Maisey MN (1978) An evaluation of the use of 99mTc-dimercaptosuccinic acid (DMSA) as a static renal imaging agent. Br J Radiol 51:599–607

    PubMed  CAS  Google Scholar 

  • Clarke SEM, Lazarus CR, Wraight P, Sampson C, Maisey MN (1988) Pentavalent 99mTc-DMSA, 131I-MIBG, and 99mTc-MDP. An evaluation of three imaging techniques in patients with medullary carcinoma of the thyroid. J Nucl Med 29:33–38

    PubMed  CAS  Google Scholar 

  • Council of Europe (2005) Technetium [99mTc] succimer injection. European pharmacopeia monograph no. 643. Council of Europe, Maisonneuve, Sainte-Ruffine, p 1229

    Google Scholar 

  • Enlander D, Weber PM, dos Remedios LV (1974) Renal cortical imaging in 35 patients: superior quality with 99mTc-DMSA. J Nucl Med 15:743–749

    PubMed  CAS  Google Scholar 

  • Handmaker H, Young BW, Lowenstein JM (1975) Clinical experience with 99mTc-DMSA (dimercaptosuccinic acid), a new renal imaging agent. J Nucl Med 16:28–32

    PubMed  CAS  Google Scholar 

  • Hovinga TKK, dejong PE, Piers DA, Beekhuis H, van-der Hem GK, de Zeeuw D (1989) Diagnostic use of angiotensin-converting enzyme inhibitors in radioisotope evaluation of unilateral renal artery stenosis. J Nucl Med 30:605–614

    Google Scholar 

  • Ikeda I, Inoue O, Kurata, K (1976) Chemical and biological studies on 99mTc-DMSA-II: effect of Sn(II) on the formation of various Tc-DMSA complexes. Int J Appl Radiat Isot 27:681–688

    PubMed  CAS  Google Scholar 

  • Ikeda I, Inoue O, Kurata K (1977a) Chemical and biological studies on 99mTc-DMSA-I: formation of complex by four different methods. Int. J Nucl Med Biol. 4:56–65

    PubMed  CAS  Google Scholar 

  • Ikeda I, Inoue O, Kurata K (1977b) Preparation of various 99mTc-dimercaptosuccinate complexes and their evaluation as radiotracers. J Nud Med 18:1222–1229

    CAS  Google Scholar 

  • International Commission on Radiological Protection (1987) Technetium-DMSA. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol. 18, no.1–4. Pergamon, Oxford, pp 185–186

    Google Scholar 

  • Johannsen B, Spies H, Syhre R (1979) Studies on complexation of 99mTc with dimercaptosuccinic acids with regard to organ specificity of 99mTc-radiopharmaceuticals. Eur J Nucl Med 4:148

    Google Scholar 

  • Kopecky RT, McAfee JG, Thomas FD, Anderson HR Jr, Hellwig B, Roskopf M, Patchin D (1990) Enalaprilat-enhanced renography in a rat model of renovascular hypertension. J Nucl Med 31:501–507

    PubMed  CAS  Google Scholar 

  • Lange MJ de, Piers DA, Kosterink JGW, van Luijk WHJ, Meijer S, de Zeeuw D, van-der Hem GJ (1989) Renal handling of technetium-99m-DMSA: evidence for glomerular filtration and peritubular uptake. J Nucl Med 30:1219–1223

    PubMed  Google Scholar 

  • Lee HB, Blaufox MD (1985) Mechanism of renal concentration of technetium-99m glucoheptonate. J Nucl Med 26:1308–1313

    PubMed  CAS  Google Scholar 

  • Lin TH, Khentigam A, Winchell HS (1974) A 99mTc-chelate substitute for organoradiomercurial renal agents. J Nucl Med 15:34–35

    PubMed  CAS  Google Scholar 

  • Ohta H, Yamamoto K, Endo K, Mori T, Hamanaka D, Shimazu A, Ikekubo K, Makimoto K, Iida Y, Konishi J, Morita R, Hata N, Horiuchi K, Yokoyama A, Torizuka K, Kuma K (1984) A new agent for medullary carcinoma of the thyroid. J Nucl Med 25:323–325

    PubMed  CAS  Google Scholar 

  • Ramamoorthy N, Shetye SV, Pandey PM, Mani RS, Patel MC, Patel RB, Ramanathan P, Krishna BA, Sharma SM (1987) Preparation and evaluation of 99mTc(V)-DMSA complex: studies in medullary carcinoma of thyroid. Eur J Nucl Med 12:623–628

    PubMed  CAS  Google Scholar 

  • Saha GB (1997) Characteristics of specific radiopharmaceuticals. In: Fundamentals of nuclear pharmacy, 4th edn. Springer, Berlin Heidelberg New York, p 125

    Google Scholar 

  • Taylor A Jr, Lallone RL, Hagan PL (1980) Optimal handling of dimercaptosuccinic acid for quantitative renal scanning. J Nucl Med 21:1190–1193

    PubMed  CAS  Google Scholar 

  • United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc-99m succimer injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1864

    Google Scholar 

  • Van Duzee BF, Bugaj JE (1981) The effect of total technetium concentration on the performance of a skeletal imaging agent. Clin Nucl Med 6(Suppl):148

    Google Scholar 

  • Westera G, Gadze A, Horst W (1985) A convennient method for the preparation of 99mTc(V)-DMSA. Int J Appl Radiat Isot 36:311–312

    PubMed  CAS  Google Scholar 

  • Yee CA, Lee HB, Blaufox MD (1981) 99mTc-DMSA renal uptake: influence of biochemical and physiologic factors. J Nucl Med 22:1054–1058

    PubMed  CAS  Google Scholar 

References

  • Atkins HL, Eckelman WC, Hauser W, Klopper JF, Richards P (1971) Evaluation of glomerular filtration rate with 99mTc-DTPA. J Nucl Med 12:338

    Google Scholar 

  • Agnew JE (1991) Characterizing lung aerosol penetration. J Aerosol Med 4:237–250

    Google Scholar 

  • Barbour GL, Crumb CK, Boyd CM, Reeves RD, Rastogi SP, Patterson RM (1976) Comparison of inulin, iothalamate and Tc-99m-DTPA for measurement of glomerular filtration rate. J Nucl Med 17:317–320

    PubMed  CAS  Google Scholar 

  • Carlsen JE, Moller MH, Lund JO, Trap-Jensen J (1988) Comparison of four commercial Tc-99m-(Sn)-DTPA preparations used for the measurement of glomerular filtration rate. J Nucl Med 21:126–129

    Google Scholar 

  • Chadhuri TK (1974) Use of 99mTc-DTPA for measuring gastric emptying time. J Nucl Med 15:391–395

    Google Scholar 

  • Coates G, O’Brodovich H (1986) Measurement of pulmonary epithelial permeability with 99mTc-DTPA aerosol. Semin Nucl Med 16:275–284

    PubMed  CAS  Google Scholar 

  • Council of Europe (2005) Technetium 99mTc pentetate injection. European Pharmacopeia 5.0, monograph no 642. Council of Europe, Maisonneuve, Sainte-Ruffine, pp 1223

    Google Scholar 

  • Gruenewald SM, Collins LT (1983) Renovascular hypertension: quantitative renography as a screening test. Radiology 149:287–291

    PubMed  CAS  Google Scholar 

  • Hauser W, Atkins HL, Nelson KG, Richards P (1970) Technetium-99m-DTPA: a new radiopharmaceutical for brain and kidney scanning. Radiology. 94:679–684

    PubMed  CAS  Google Scholar 

  • Hilson AJW, Mistry RD, Maisey MN (1976) Tc-99m-DTPA for the measurement of glomerular filtration rate. Br J Radiol 49:794–796

    PubMed  CAS  Google Scholar 

  • International Commission on Radiological Protection (1987a) Technetium-DTPA. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 187–190

    Google Scholar 

  • International Commission on Radiological Protection (1987b) Technetium-labelled aerosols. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 217–219

    Google Scholar 

  • Kadir S, Strauss WH (1979) Evaluation of inflammatory bowel disease with Tc-99m-DTPA. Radiology 130:443–446

    PubMed  CAS  Google Scholar 

  • Klopper JF, Hauser W, Atkins HL, Eckelman WC, Richards P (1972) Evaluation of Tc-99m-DTPA for the measurement of glomerular filtration rate, J Nucl Med 13:107–110

    PubMed  CAS  Google Scholar 

  • McAfee JG, Gagne G, Atkins HL, Kirchner PT, Reba RC, Blaufox MD, Smith EM (1979) Biological distribution and excretion of DTPA labeled with Tc-99m and In-Ill. J Nucl Med 20:1273–1278

    PubMed  CAS  Google Scholar 

  • Nielsen SP, Moller ML, Trap-Jensen J (1977) Tc-99m-DTPA scintillation-earner a renography: a new method for estimation of single-kidney function, J Nucl Med 18:112–117

    PubMed  CAS  Google Scholar 

  • O’Reilly PH (1992) Diuresis renography. Recent advances and recommended protocols. Br J Urol 69:113–120

    PubMed  CAS  Google Scholar 

  • Rehling M (1988) Stability, protein binding and clearance studies of 99mTc-DTPA. Evaluation of a commercially available dry-kit. Scand J Clin Lab Invest 48:603–609

    PubMed  CAS  Google Scholar 

  • Rowell KL, Kontzen FK, Stutzman ME, Caranto R, Barber JM, Russel CD, Dubovsky EV, Scott JW (1986) Technical aspects of a new technique for estimating glomerular filtration rate using Technetium-99m-DTPA. J Nucl Med Tech 14:196–198

    Google Scholar 

  • Russell CD (1985) Radiopharmaceuticals used to assess kidney function and structure. Tauxe WN, Dubovsky EV (eds) Nuclear medicine in clinical urology and nephrology. Appleton-Century-Crofts, Norwalk, Conn., pp 7–31

    Google Scholar 

  • Russel CD, Crittenden RC, Cash AG (1980) Determination of net ionic charge on Tc-99m-DTPA and Tc-99m-EDTA by a column ion-exchange method. J Nucl Med 21:354–360

    Google Scholar 

  • Santolicandro A, Giuntini C (1979) Patterns of deposition of labeled monodispersed aerosols in obstructive lung disease. J Nucl Med All Sci 23:115

    CAS  Google Scholar 

  • Taplin GV, Chopra SK (1978) Lung per fusion-inhalation scintigraphy in obstructive airway disease and pulmonary embolism. Radiol Clin N Am 16:491–513

    PubMed  CAS  Google Scholar 

  • Tofe AJ, Bevan JA, Fawzi MB, Francis MD, Silberstein EB, Alexander GA, Gunderson DE, Blair K (1980) Gentisic acid: a new stabilizer for low tin skeletal imaging agents. Concise communication. J Nucl Med 21:366–370

    PubMed  CAS  Google Scholar 

  • United States Pharmacopeia! Convention (2005) Official Monographs: USB 28, technetium Tc-99m pentetate injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1860

    Google Scholar 

  • Van Duzee BF, Bugaj JE (1981) The effect of total technetium concentration on the performance of a skeletal imaging agent. Clin Nucl Med 6(Suppl):148

    Google Scholar 

  • Wagner HN Jr (1995) Regional ventilation and perfusion. In: Wagner HN Jr, Szabo S, Buchanan JW (eds) Principles of nuclear medicine, 2nd edn. Saunders, Philadelphia, pp 887–895

    Google Scholar 

  • Wanner A (1977) Clinical aspects of mucociliary transport. Amer Rev Respir Dis 116:73–125

    CAS  Google Scholar 

  • Wassner SJ (1981) Assessment of glomerular filtration rate single injection of technetium Tc-99m pentetate. Am J Dis Child 135:374–375.

    PubMed  CAS  Google Scholar 

References

  • Bubeck B, Brandau W, Weber E, Kaelble T, Parekh N, Georgi P (1990) Pharmacokinetics of technetium-99m-MAG3 in humans. J Nucl Med 31:1285–1293

    PubMed  CAS  Google Scholar 

  • Gupta NK, Bomanji JB, Waddington W, Lui D, Costa DC, Verbruggen AM, Ell PJ (1995) Technetium-99m-L;L-ethylenedicysteine scintigraphy in patients with renal disorders. Eur J Nucl Med 22:617–624

    PubMed  CAS  Google Scholar 

  • International Commission on Radiological Protection (1991) Technetium-labeled mercaptoacetyl-triglycine (MAG3) In: Annals of the ICRP, radiological protection in biomedical research. ICRP publication 62, vol. 22, no. 3. Pergamon, Oxford, pp 15–19

    Google Scholar 

  • Kabasakal L, Atay S, Vural VA, Özker K, Sönmezoglu K, Demir M, Uslu I, Isitman AT, Önsel C (1995) Evaluation of technetium-99m-ethylenedicysteine in renal disorders and determination of extraction ratio. J Nucl Med 36:1398–1403

    PubMed  CAS  Google Scholar 

  • Kabasakal L, Turoglu HT, Önsel C, Özker K, Uslu I, Atay S, Cansiz T, Sönmezoglu K, Altiok E, Isitman AT, Kapicioglu T, Urgancioglu I (1995) Clinical comparsion of technetium-99m-L;L-EC, technetium-99m-MAG3 and iodine-125-OIH in renal disorders. J Nucl Med 36:224–228

    PubMed  CAS  Google Scholar 

  • Kibar M, Tutus A, Paydas S, Reyhan M (1997) Captopril-enhanced technetium-99m-L;L-ethylenedicysteine renal scintigraphy in patients with suspected renovascular hypertension: comparative study with Tc-99m-MAG3. J Nucl Med 6:132–137

    Google Scholar 

  • Özker K, Önsel C, Kabasakal L, Sayman HB, Uslu I, Bozluolcay S, Cansiz T, Kapicioglu T, Urgancioglu I (1994) Te chnetium-99 m L;L-ethyl enedicysteine: a comparative study of renal scintigraphy with Tc-99m-MAG-3 and I-131-OIH in patients with obstructive renal disease. J Nucl Med 35:840–845

    PubMed  Google Scholar 

  • Stoffel M, Jamar F, Van Nerom C, Verbruggen AM, Mourad M, Leners N, Squifflet JP, Beckers C (1994) Evaluation of technetium-99m-L;L-EC in renal transplant recipients: comparative study with technetium-99m-MAG3 and iodine-125-OIH. J Nucl Med 35:1951–1958

    PubMed  CAS  Google Scholar 

  • Stoffel M, Jarnar F, Van Nerom C, Verbruggen AM, Besse T, Squifflet JP, Becker C (1996) Technetium-99m-L,L-ethylenedicysteine clearance and correlation with iodine-125 ortho-iodohippurate for determination of effective renal plasma flow. Eur J Nucl Med 23:365–370

    PubMed  CAS  Google Scholar 

  • Van Nerom CG, Bormans GM, De Roo MJ, Verbruggen AM (1993) First experience in healthy volunteers with technetium-99m L,L-ethylenedicysteine, a new renal imaging agent. Eur. J Nucl Med 20:738–746

    PubMed  Google Scholar 

  • Verbruggent AM, Nosco DL, Van Nerom CG, Bormans GM, Adriaens PJ, De Roo MJ (1992) Technetium-99m-L,L-ethylenedicysteine: a renal imaging agent. I. Labelling and evaluation in animals. J Nucl Med 33:551–557

    Google Scholar 

References

  • Bubeck B, Brandau W, Dreikorn K, Steinbächer M, Eisenhut M, Trojan H, zum Winkel K (1986) Clinical comparison of 1-131 o-iodohippurate with Tc-99m-CO2-DADS-A and Tc-99m-MAG3 by simultaneous double tracer measurement. Nucl Compact 17:135–138

    Google Scholar 

  • Bubeck B, Brandau W, Eisenhut M, Weidenhammer K, Georgi P (1987) The tubular extraction rate (TER) of Tc-99m-MAG3: a new quantitative parameter of renal function. Nuc Compact 18:260–267

    Google Scholar 

  • Brandau W, Bubeck B, Eisenhut M, Taylor DM (1988a) Technetium-99m labeled renal function and imaging agents: III. Synthesis of Tc-99m-MAG3 and bio distribution of by-products. Appl Radiat Isot 39:121–129

    CAS  Google Scholar 

  • Bubeck B, Brandau W, Reinbold F, Dreikorn K, Steinbächer M, Eisenhut M, Georgi P (1988b) Technetium-99m labeled renal function and imaging agents: I clinical evaluation of Tc-99m-CO2-DADS-A (Tc-99m-N,N-bis-(mercapto-acetyl)-2,3-diamino-propanoate). Nucl Med Biol 15:99–108

    CAS  Google Scholar 

  • Bubeck B, Brandau W, Steinbächer M, Reinbold F, Dreikorn K, Eisenhut M, Georgi P (1988c) Technetium-99m labeled renal function and imaging agents: II. Clinical evaluation of 99mTc-MAG3 (99mTc-mercaptoacetylglycylglycylglycine). Nucl Med Biol 15:109–118

    CAS  Google Scholar 

  • Bubeck B, Brandau W, Weber E, Kaelble T, Parekh N, Georgi P (1990) Pharmacokinetics of technetium-99m-MAG3 in humans. J Nucl Med 31:1285–1293

    PubMed  CAS  Google Scholar 

  • Council of Europe (2005) Technetium 99mTc mertiatide injection. European pharmacopeia 5.0, monograph no 1372. Council of Europe, Maisonneuve, Sainte-Ruffine, pp 1220

    Google Scholar 

  • Coveney JR, Robbins MS (1987) Comparison of technetium-99m MAG3 kit with HPLC-purified technetium-99m MAG3 and OIH in rats. J Nucl Med 28:1881–1887

    PubMed  CAS  Google Scholar 

  • Davison A, Jones A, Orvig C, Sohn M (1981) A new class of oxotechnetium (+5) chelate complexes containing a TcON2S2 core. Inorg Chem 20:1629–1632

    CAS  Google Scholar 

  • Fritzberg AR, Kuni CC, Klingensmith WC III, Stevens J, Whitney WP (1982) Synthesis and biological evaluation of Tc-99m N,N-bis (mercaptoacetyl)-2,3-diaminopropanoate: a potential replacement for [131I]-o-iodohippurate, J Nucl Med 23:592–598

    PubMed  CAS  Google Scholar 

  • Fritzberg AR, Kasina S, Eshima D, Johnson DL (1986) Synthesis and biological evaluation of technetium-99m-MAG3 as a hippuran replacement. J Nucl Med 27:111–116

    PubMed  CAS  Google Scholar 

  • International Commission on Radiological Protection (1991) Tech net ium-lab ell ed mercaptoacetyl-triglycine (MAG3) In: Annals of the ICRP, radiological protection in biomedical research. ICRP publication 62, vol 22, no 3. Pergamon, Oxford, pp 15–19

    Google Scholar 

  • Jafri RA, Britton KE, Nimmon CC, Solanki K, Al-Nahas A, Bomanji J, Fettich J, Hawkins LA (1988) Technetium-99m MAG3, a comparison with iodine-123 and iodine-131 ortho-iodohippurate, in patients with renal disorders. J Nucl Med 29:147–158

    PubMed  CAS  Google Scholar 

  • Kletter K (1988) Neue Aspekte der nuklearmedizinischen Nierenfunktionsdiagnostik: Verbesserte Aussagekraft durch pharmakologische Intervention und quantitative Analyseverfahren [in German]. Wien Klin Wochenschr 100(Suppl 177)

    Google Scholar 

  • Mallinckrodt (1992) TechneScan MAG3 product information. Malinckrodt, Phillipsburg, NJ

    Google Scholar 

  • Russel CD, Thorstad B, Yester MV, Stutzman M, Baker T, Dubovsky EV (1988) Comparison of technetium-99m MAG3 with iodine-131 hippuran by a simultaneous dual channel technique. J Nucl Med 29:1189–1193

    Google Scholar 

  • Taylor A, Eshima D, Fritzberg AR, Christian PE, Kasina S (1986) Comparison of iodine-131 OIH and technetium-99m MAG3 renal imaging in volunteers. J Nucl Med 27:795–803

    PubMed  Google Scholar 

  • United States Pharmacopeia! Convention (2005) Official Monographs: USP 28, technetium Tc-99m mertiatide injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1858

    Google Scholar 

  • Van Duzee BF, Bugaj JE (1981) The effect of total technetium concentration on the performance of a skeletal imaging agent. Clin Nucl Med 6(Suppl):P148

    Google Scholar 

References

  • Brown PH, Krishnamurthy GT, Bobba VR, Kingston E, Turner FE (1982) Radiation-dose calculation for five Tc-99m IDA hepatobiliary agents. J Nucl Med 23:1025–1030

    PubMed  CAS  Google Scholar 

  • Council of Europe (2005) Technetium 99mTc etifenin injection. European pharmacopeia 5.0, monograph no 585. Council of Europe, Maisonneuve, Sainte-Ruffine, p 1212

    Google Scholar 

  • Fink-Bennett D (1995) Gallbladder and biliary ducts. Wagner HN Jr, Szabo Z, Buchanan JW (eds) In: Principles of nuclear medicine, 2nd edn. Saunders, Philadelphia, pp 946–957

    Google Scholar 

  • Freeman LM, Sugarman LA, Weissmann HS (1981) Role of cholecystokinetic agents in 99mTc-IDA cholescintigraphy. Sem Nucl Med 11:186–193

    CAS  Google Scholar 

  • Fritzberg AR (1986) Advances in the development of hepatobiliary radiopharmaceuticals. In: Fritzberg AR (ed) Radiopharmaceuticals: progress and clinical perspectives, vol. I. CRC Press, Boca Raton, pp 89–116

    Google Scholar 

  • International Commission on Radiological Protection (1987) Technetium-labelled iminodiacetic acid (IDA) derivatives. In: Annals of the ICRP, radiation dose to patients from radiopharmaceuticals, biokinetic models and data. ICRP publication 53, vol 18, no 1–4. Pergamon, Oxford, pp 201–205

    Google Scholar 

  • Klingensmith WC, Fritzberg AR, Spitzer VM, Kuni CC, Shanahan WSM (1981) Clinical comparison of Tc-99m diisopropyl-IDA and diethyl-IDA for evaluation of the hepatobiliary system. Radiology 140:791–795

    PubMed  Google Scholar 

  • Krishnamurthy S, Krishnamurthy GT (1989) Technetium-99m-iminodiacetic acid organic anions: review of biokinetics and clinical application in hepatology. Hepatology 9:139–159

    PubMed  CAS  Google Scholar 

  • Krishnamurthy GT, Turner FE (1990) Pharmacokinetics and clinical application of technetium-99m-labeled hepatobiliary agents. Sem Nucl Med 20:130–149

    CAS  Google Scholar 

  • Loberg MD, Fields AT (1978) Chemical structures of Tc-99m-labeled N-(2,6-dimethylphenyl-carbamoylmethyl)iminodiacetic acid (Tc-HIDA). Int J Appl Radiat Isot 29:167–173

    CAS  Google Scholar 

  • Loberg MD, Cooper MD, Harvey EB, Callery PS, Faith WC (1976) Development of new radio-pharmaceuticals based on N-substitution of iminodiacetic acid. J Nucl Med 17:633–638

    PubMed  CAS  Google Scholar 

  • Majd M, Reba R, Altaian RP (1981) Effect of phenobarbital on Tc-99m-IDA scintigraphy in the evaluation of neonatal jaundice. Sem Nucl Med 11:194–204

    CAS  Google Scholar 

  • Nicholson RW, Herman KJ, Shields RA, Testa HJ (1980) The plasma protein binding of HIDA. Eur J Nucl Med 5:311–312

    PubMed  CAS  Google Scholar 

  • Nielson P, Rasmussen F (1975) Relationship between molecular structure and excretion of drugs. Life Sci 17:1495

    Google Scholar 

  • Nunn AD, Schramm E (1981) Analysis of Tc-HIDAs and factors affecting their labeling rate, purity, and stability. J Nucl Med 22:P52

    Google Scholar 

  • Nunn AD, Loberg MD, Conley RA (1983) A structure-distribution-relationship approach leading to the development of Tc-99m-mebrofenin: an improved cholescintigraphic agent. J Nucl Med 24:423–430

    PubMed  CAS  Google Scholar 

  • Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radiopharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–279

    Google Scholar 

  • Ryan J, Cooper MD, Loberg MD (1977) Technetium-99m-labeled N-(2,6-dimethylphenylcarbamoyl-methyl) iminodiacetic acid (Tc-99m-HIDA): a new radiopharmaceutical for hepatobiliary imaging studies. J Nud Med 18:997–1004

    CAS  Google Scholar 

  • United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc 99m disofenin injection, technetium Tc 99m lidofenin injection, technetium Tc 99m mebrofenin injection. United States Pharmacopeia (USP) 28-national formulary (NF) 23, pp 1854–1857

    Google Scholar 

  • Weissmann HS, Frank MS, Bernstein LH, Freeman LM (1979) Rapid and accurate diagnosis of acute cholecystitis with Tc-99m-HIDA cholescintigraphy. Am J Roentg 132:523–528

    CAS  Google Scholar 

References

  • Amersham Healthcare (2000) Product monograph for the NeoSpect kit for the preparation of Tc-99m depreotide. Amersham Healthcare, UK

    Google Scholar 

  • Berlex Laboratories (2001) Product monograph for the NeoTect kit for the preparation of Tc-99m depreotide. Berlex Laboratories, Wayne, NJ (Diatide, NDA No. 21-012)

    Google Scholar 

  • Blum JE, Handmaker H, Rinne NA (1999) The utility of a somato statin-type receptor binding peptide radiopharmaceutical (P829) in the evaluation of solitary pulmonary nodules. Chest 115:224–232

    PubMed  CAS  Google Scholar 

  • Blum JE, Handmaker H, Lister-James J, Rinne NA (2000) NeoTect solitary pulmonary nodule study group. A multicenter trial with a somatostatin analog 99mTc-depreotide in the evaluation of solitary pulmonary nodules. Chest 117:1232–1238

    PubMed  CAS  Google Scholar 

  • Danielsson R, BÅÅth M, Svensson L, Forslöv U, Kölbeck K-G (2005) Imaging of regional lymph node metastases with 99mTc-depreotide in patients with lung cancer. Eur J Nud Med Mol Imag 32:925–931

    Google Scholar 

  • Hofland LJ, Lamberts SWJ (1997) Somatostatin analogs and receptors: diagnostic and therapeutic applications. Cancer Treat Res 89:365–382

    PubMed  CAS  Google Scholar 

  • Hofland LJ, Lamberts SWJ, Van Hagen PM, Reubi JC, Schaeffer J, Waaijers M, Van Koetsveld PM, Srinivasan A, Krenning EP, Breeman WAP (2003) Crucial role for somatostatin receptor subtype 2 in determining the uptake of [111in-DTPA-D-Phe1]octreotide in somatostatin receptor-positive organs. J Nucl Med 44:1315–1321

    PubMed  CAS  Google Scholar 

  • International Commission on Radiological Protection (1990) ICRP Publication 60: recommendations of the International Commission on Radiological Protection. In: Annals of the ICRP, vol 21, no 1–3. Pergamon, Oxford

    Google Scholar 

  • Kahn D, Menda Y, Kernstine K, Bushnell DL, McLaughlin K, Miller S, Berbaum K (2004) The utility of 99mTc-depreotide compared with F-18 fluorodeoxyglucose positron emission tomography and surgical staging in patients with suspected non-small cell lung cancer. Chest 125:494–501

    PubMed  CAS  Google Scholar 

  • Lamberts SWJ, Krenning EP, Reubi JC (1991) The role of somatostatin and ist analogs in the diagnosis and treatment of tumors. Endocr Rev 12:450–482

    PubMed  CAS  Google Scholar 

  • Menda Y, Kahn D (2002) Somatostatin receptor imaging of non-small cell lung cancer with 99m-Tc depreotide. Semin Nud Med 32:92–96

    Google Scholar 

  • Menda Y, Kahn D, Bushnell DL, Thomas M, Miller S, McLaughlin K, Kernstine KH (2001) Nonspecific mediastinal uptake of 99mTc-depreotide (NeoTect). J Nucl Med 42(Suppl):304P

    Google Scholar 

  • Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinology 20:157–198

    CAS  Google Scholar 

  • Reubi JC, Schaer JC, Laissue JA, Waser B (1996) Somatostatin receptors and their subtypes in human tumors and in peritumoral vessels. Metabolism 45:39–41

    PubMed  CAS  Google Scholar 

  • United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc 99m depreotide injection. United States Pharmacopeia Convention, Rockville, Md, p 1853

    Google Scholar 

  • Vallabhajosula S, Moyer BR, Lister-James J, McBride BJ, Lipszyc H, Lee H, Bastidas D, Dean RT (1996) Predinical evaluation of technetium-99m-labded somatostatin receptor-binding peptides. JNM 37:1016–1022

    PubMed  CAS  Google Scholar 

  • Van Den Bossche B, Van Bdle S, De Winter F, Signore A, Van de Wide C (2006) Early prediction of endocrine therapy effect in advanced breast cancer patients using 99mTc-depreotide scintigraphy. J Nucl Med 47:6–13

    Google Scholar 

  • Virgolini I, Leimer M, Handmaker H, Lastoria S, Bischof C, Muto P, Pangerl T, Gludovacz D, Peck-Radosavljevic M, Lister-James J, Hamilton G, Kaserer K, Valent P, Dean R (1998) Somastotatin receptor subtype specific and in vivo binding of a novel tumor tracer, 99mTc-P829. Cancer Res 58:1850–1859

    PubMed  CAS  Google Scholar 

References

  • Behr T, Becker W, Hanappel E, Goldenberg DM, Wolf F (1995) Targeting of liver metastases of colorectal cancer with IgG, F(ab′)2, and Fab′ anti-carcinoembryonic antigen antibodies labelled with 99mTc: the role of metabolism and kinetics. Cancer Res. 55: 5777s–5785s

    PubMed  CAS  Google Scholar 

  • Hughes KS, Pinsky CM, Petrelli NJ, Moffat FL Jr, Patt YZ, Hammershaimb L, Goldenberg DM (1997) Use of carcinoembryonic antigen radioimmunodetection and computed tomography for predicting the resectability of recurrent colorectal cancer. Ann Surg 226:621–631

    PubMed  CAS  Google Scholar 

  • Immunomedics Europe (2000) Product monograph for the CEA-Scan (Arcitumomab) kit for the preparation of Tc-99m CEA-Scan. Immunomedics Europe, Darmstadt, Germany

    Google Scholar 

  • International Commission on Radiological Protection (1990) ICRP Publication 60: recommendations of the International Commission on Radiological Protection. In: Annals of the ICRP, vol 21, no 1–3. Pergamon, Oxford

    Google Scholar 

  • Lechner P, Lind P, Goldenberg DM (2000) Can postoperative surveillance with serial CEA immunoscintigraphy detect resectable rectal cancer recurrence and potentially improve tumor-free survival? J Am Coll Surg 191:511–518

    PubMed  CAS  Google Scholar 

  • Moffat FL Jr, Pinsky CM, Hammershaimb L, Petrelli NJ, Patt YZ, Whaley FS, Goldenberg DM (1996) Immunomedics study group clinical utility of external immunoscintigraphy with the IMMU-4 technetium-99m Fa′b antibody fragment in patients undergoing surgery for carcinoma of the colon and rectum: results of a pivotal, phase III trial. J Clin Oncol 14:2295–2305

    PubMed  Google Scholar 

  • Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radiopharmaceutical formulation problems. In: Hladik WB III, Saha GB, Study KT (eds) Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–289

    Google Scholar 

  • Primus FJ, Newell KD, Blue A, Goldenberg DM (1983) Immunological heterogeneity of carcinoembryonic antigen: antigenic determinants on carcinoembryonic antigen distinguished by monoclonal antibodies. Cancer Res 43:686–692

    PubMed  CAS  Google Scholar 

  • United States Pharmacopeial Convention (2005) Official Monographs: USP 28, technetium Tc-99m arcitumomab injection, United States Pharmacopeia (USP) 28-national formulary (NF) 23, p 1852

    Google Scholar 

  • Wegener W, Petrelli NJ, Serafini A, Goldenberg DM (2000) Safety and efficacy of arcitumomab imaging in colorectal cancer after repeated administration. J Nucl Med 41:1016–1020

    PubMed  CAS  Google Scholar 

  • Willkomm P, Bender H, Bangard M, Decker P, Grunwald F, Biersack HJ (2000) FDG PET and immunoscintigraphy with 99mTc-labeled antibody fragments for detection of the recurrence of colorectal carcinoma. J Nucl Med 41:1657–1663

    PubMed  CAS  Google Scholar 

References

  • Barron B, Hanna C, Passalaqua A, Lamki L, Wegener WA, Goldenberg DM (1999) Rapid diagnostic imaging of acute nonclassic appendicitis by leukoscintigraphy with sulesomab, a technetium 99m-labeled anti-granulocyte monoclonal antibody Fab’. Surgery 125(3):288–296

    PubMed  CAS  Google Scholar 

  • Becker W, Bair J, Behr TM, Repp R, Streckenbach H, Beck H, Gramatzki M, Winship MJ, Goldenberg DM, Wolf F (1994) Detection of soft-tissue and osteomyeltis using a technetium-99m labeled anti-granulocyte monoclonal antibody fragment. J Nucl Med 35:1436–1443

    PubMed  CAS  Google Scholar 

  • Becker W, Palestro PJ, Winship MJ, Feld T, Pinsky CM, Wolf F, Goldenberg DM (1996) Rapid imaging of infections with a monoclonal antibody fragment (LeukoScan). Clinical Orthopaedics 329:263–272

    Google Scholar 

  • Gratz S, Raddatz D, Hagenah G, Behr TM, Behe M, Becker W (2000) 99mTc-labelled antigranulocyte monoclonal antibody FAB’ fragments versus echocardiography in the diagnosis of subacute infective endocarditis. Int J Cardiol 75:75–84

    PubMed  CAS  Google Scholar 

  • Gratz S, Schipper ML, Dorner J, Hoffken H, Becker W, Kaiser JW, Behe M, Behr TM (2003) LeukoScan for imaging infection in different clinical settings: A retrospective evaluation and extended review of the literature. Clin Nucl Med 28(4):267–276

    PubMed  CAS  Google Scholar 

  • Hakki S, Harwood SJ, Morrissey M, Camblin JG, Laven DL, Webster WB Jr (1997) Comparative study of monoclonal antibody scan in diagnostic orthopaedic infection. Clin Orthop Relat Res 335:275–285.

    PubMed  Google Scholar 

  • Harwood SJ, Valdivia S, Hung GL, Quenzer RW (1999) Use of sulesomab, a radiolabeled antibody fragment, to detect osteomyelitis in diabetic patients with foot ulcers by leukoscintigraphy. Clin. Infect. Dis. 28(6):1200–1205

    PubMed  CAS  Google Scholar 

  • Immunomedics Europe (1997) Product monograph for LeukoScan (sulesomab). Issued by Immu-nomedics Europe, Darmstadt, Germany.

    Google Scholar 

  • International Commission on Radiological Protection (1990) ICRP publication 60: recommendations of the International Commission on Radiological Protection. In: Annals of the ICRP, vol 21, no 1–3. Pergamon, Oxford

    Google Scholar 

  • Kampen W, Brenner W, Terheyden H, Bohuslavizki KH, Henze E (1999) Decisive diagnosis of infected mandibular osteoradionecrosis with a Tc-99m-labeled anti-granulocyte Fab’-fragment. Nuklearmedizin 38:309–311

    PubMed  CAS  Google Scholar 

  • Ponto JA, Swanson DP, Freitas JE (1987) Clinical manifestations of radiopharmaceutical formulation problems. Hladik WB III, Saha GB, Study KT (eds) In: Essentials of nuclear medicine science. Williams & Wilkins, Baltimore, pp 268–289

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Zolle, I., Bremer, P.O., Jánoki, G. (2007). Monographs of 99mTc Pharmaceuticals. In: Zolle, I. (eds) Technetium-99m Pharmaceuticals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33990-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33990-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33989-2

  • Online ISBN: 978-3-540-33990-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics