Skip to main content

Functional Neuroanatomy of the Human Visual System: A Review of Functional MRI Studies

  • Chapter
Pediatric Ophthalmology, Neuro-Ophthalmology, Genetics

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

Abstract

■ This chapter reviews work on the method of functional magnetic resonance imaging (fMRI), which has been used to describe the structural and functional anatomy of the human visual system.

■ Exploitation of the endogenous paramagnetic contrast agent deoxyhemoglobin has yielded functional maps of: - lateral geniculate nucleus of the thalamus - the columnar organization of primary visual cortex - multiple representations of the visual hemifields in the ventral and dorsal visual pathways - the interface between the visual system and cortical networks underlying the control of oculomotor behavior, visual working memory, and higher visual cognition.

■ In a significant advance beyond the traditional localistic “one region, one type of processing” paradigm, new methods, such as dynamic causal modeling and discriminant analysis, seek to determine temporal relationships among the fMRI time series of multiple brain regions.

■ Applying these new methods, neuroscientists can discern how spatially distributed brain regions interact via feedforward and feedback signals sent within neural circuits.

■ fMRI promises to contribute more to our understanding of the complex neural circuits that subserve visual perception and visuospatial cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acs F, Greenlee MW (2006) A dynamic causal modeling study of attention shifting between smooth pursuit and saccadic targets . Human Brain Mapping Suppl 521; available online at http://www.meetingassistant.com/ohbm2006/planner/abstract_popup.php?abstractno=631

    Google Scholar 

  2. Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17(8):2859–2868

    PubMed  CAS  Google Scholar 

  3. Backus BT, Fleet DJ, Parker AJ, Heeger DJ (2001) Human cortical activity correlates with stereoscopic depth perception. J Neurophysiol 86(4):2054–2068

    PubMed  CAS  Google Scholar 

  4. Bartels A, Zeki S (2000) The architecture of the colour centre in the human visual brain: new results and a review. Eur J Neurosci 12(1):172–193

    Article  PubMed  CAS  Google Scholar 

  5. Bisley JW, Goldberg ME (2003) The role of the parietal cortex in the neural processing of saccadic eye movements. Adv Neurol 93:141–157

    PubMed  Google Scholar 

  6. Blake R, Logothetis NK (2002) Visual competition. Nat Rev Neurosci 3(1):13–21

    Article  PubMed  CAS  Google Scholar 

  7. Blasdel GG, Salama G (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321(6070):579–585

    Article  PubMed  CAS  Google Scholar 

  8. Boynton GM, Finney EM (2003) Orientation-specific adaptation in human visual cortex. J Neurosci 23(25):8781–8787

    PubMed  CAS  Google Scholar 

  9. Brewer AA, Press WA, Logothetis NK, Wandell BA (2002) Visual areas in macaque cortex measured using functional magnetic resonance imaging. J Neurosci 22(23):10416–10426

    PubMed  CAS  Google Scholar 

  10. Brown MR, DeSouza JF, Goltz HC, Ford K, Menon RS, Goodale MA, Everling S (2004) Comparison of memory- and visually guided saccades using event-related fMRI. J Neurophysiol 91(2):873–889

    Article  PubMed  CAS  Google Scholar 

  11. Buchert M, Greenlee MW, Rutschmann RM, Kraemer FM, Luo F, Hennig J (2002) Functional magnetic resonance imaging evidence for binocular interactions in human visual cortex. Exp Brain Res 145(3):334–339

    Article  PubMed  CAS  Google Scholar 

  12. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129(Pt 3):564–583

    Article  PubMed  Google Scholar 

  13. Cheng K, Waggoner RA, Tanaka K (2001) Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 32 (2):359–374

    Google Scholar 

  14. Cornelissen FW, Kimmig H, Schira M, Rutschmann RM, Maguire RP, Broerse A, Den Boer JA, Greenlee MW (2002) Event-related fMRI responses in the human frontal eye fields in a randomized pro- and antisaccade task. Exp Brain Res 145(2):270–274

    Article  PubMed  Google Scholar 

  15. Connolly JD, Goodale MA, Menon RS, Munoz DP (2002) Human fMRI evidence for the neural correlates of preparatory set. Nat Neurosci 5(12):1345–1352

    Article  PubMed  CAS  Google Scholar 

  16. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194

    Article  PubMed  CAS  Google Scholar 

  17. Dumoulin SO, Bittar RG, Kabani NJ, Baker CL Jr., Le Goualher G, Bruce Pike G, Evans AC (2000) A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. Cereb Cortex 10 (5):454–463

    Google Scholar 

  18. Dupont P, De Bruyn B, Vandenberghe R, Rosier AM, Michiels J, Marchal G, Mortelmans L, Orban GA (1997) The kinetic occipital region in human visual cortex. Cereb Cortex 7:283–292

    Article  PubMed  CAS  Google Scholar 

  19. Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature 369(6481):525

    Article  PubMed  CAS  Google Scholar 

  20. Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7(2):181–192

    Article  PubMed  CAS  Google Scholar 

  21. Gardner JL, Sun P, Waggoner RA, Ueno K, Tanaka K, Cheng K (2005) Contrast adaptation and representation in human early visual cortex. Neuron 47(4):607–620

    Article  PubMed  CAS  Google Scholar 

  22. Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25

    Article  PubMed  CAS  Google Scholar 

  23. Goodyear BG, Menon RS (2001) Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI. Hum Brain Mapp 14(4):210–217

    Article  PubMed  CAS  Google Scholar 

  24. Greenlee MW, Heitger F (1988) The functional role of contrast adaptation. Vision Res 28 (7):791–797

    Google Scholar 

  25. Grinvald A, Hildesheim R (2004) VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci 5(11):874–885

    Article  PubMed  CAS  Google Scholar 

  26. Grossman E, Donnelly M, Price R, Pickens D, Morgan V, Neighbor G, Blake R (2000) Brain areas involved in perception of biological motion. J Cogn Neurosci 12:711–720

    Article  PubMed  CAS  Google Scholar 

  27. Hadjikhani N, Liu AK, Dale AM, Cavanagh P, Tootell RBH (1998) Retinotopy and colour sensitivity in human visual cortical area V8. Nat Neurosci1:235–241

    Google Scholar 

  28. Hansen KA, David SV, Gallant JL (2004) Parametric reverse correlation reveals spatial linearity of retinotopic human V1 BOLD response. Neuroimage 23(1):233–241

    Article  PubMed  Google Scholar 

  29. Haynes JD, Rees G (2006) Decoding mental states from brain activity in humans. Nat Rev Neurosci 7(7):523–534

    Article  PubMed  CAS  Google Scholar 

  30. Haynes JD, Deichmann R, Rees G (2005) Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus. Nature 438(7067):496–499

    Article  PubMed  CAS  Google Scholar 

  31. Heeger DJ, Boynton GM, Demb JB, Seidemann E, Newsome WT (1999) Motion opponency in visual cortex. J Neurosci 19(16):7162–7174

    PubMed  CAS  Google Scholar 

  32. Horton JC, Hoyt WF (1991) The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol 109(6):816–824

    PubMed  CAS  Google Scholar 

  33. Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol (Lond) 195(1):215–243

    CAS  Google Scholar 

  34. Huk AC, Dougherty RF, Heeger DJ (2002) Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22(16):7195–7205

    PubMed  CAS  Google Scholar 

  35. Kamitani Y, Tong F (2005) Decoding the visual and subjective contents of the human brain. Nat Neurosci 8(5):679–685

    Article  PubMed  CAS  Google Scholar 

  36. Kastner S, De Weerd P, Pinsk MA, Elizondo MI, Desimone R, Ungerleider LG (2001) Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. J Neurophysiol 86(3):1398–1411

    PubMed  CAS  Google Scholar 

  37. Kastner S, O’Connor DH, Fukui MM, Fehd HM, Herwig U, Pinsk MA (2004) Functional imaging of the human lateral geniculate nucleus and pulvinar. J Neurophysiol 91(1):438–448

    Article  PubMed  Google Scholar 

  38. Kimmig H, Greenlee MW, Gondan M, Schira M, Kassubek J, Mergner T (2001) Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects. Exp Brain Res 141(2):184–194

    Article  PubMed  CAS  Google Scholar 

  39. Knauff M, Kassubek J, Mulack T, Greenlee MW (2000) Cortical activation evoked by visual mental imagery as measured by fMRI. Neuroreport 11(18):3957–3962

    Article  PubMed  CAS  Google Scholar 

  40. Kononen M, Paakkonen A, Pihlajamaki M, Partanen K, Karjalainen PA, Soimakallio S, Aronen HJ (2003) Visual processing of coherent rotation in the central visual field: an fMRI study. Perception 32:1247–1257

    Article  PubMed  Google Scholar 

  41. Kosslyn SM, Thompson WL (2003) When is early visual cortex active during visual mental imagery. Psych Bull 129:723–746

    Article  Google Scholar 

  42. Kosslyn SM, Pascual-Leone A, Felician O, Camposano S, Keenan JP, Thompson WL, Ganis G, Sukel KE, Alpert NM (1999) The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284(5411):167–170

    Article  PubMed  CAS  Google Scholar 

  43. Leigh RJ, Zee DS (2006) The neurology of eye movements, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  44. Logan DJ, Duffy CJ (2006) Cortical area MSTd combines visual cues to represent 3-D self-movement. Cereb Cortex 16(10):1494–1507

    Article  PubMed  Google Scholar 

  45. Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92(18):8135–8139

    Article  PubMed  CAS  Google Scholar 

  46. Malonek D, Dirnagl U, Lindauer U, Yamada K, Kanno I, Grinvald A (1997) Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. Proc Natl Acad Sci USA 94(26):14826–14831

    Article  PubMed  CAS  Google Scholar 

  47. Martinez-Conde S, Macknik SL, Hubel DH (2004) The role of fixational eye movements in visual perception. Nat Rev Neurosci 5(3):229–240

    Article  PubMed  CAS  Google Scholar 

  48. Menon RS, Goodyear BG (1999) Submillimeter functional localization in human striate cortex using BOLD contrast at 4 Tesla: implications for the vascular point-spread function. Magn Reson Med 41(2):230–235

    Article  PubMed  CAS  Google Scholar 

  49. Morrone MC, Tosetti M, Montanaro D, Fiorentini A, Cioni G, Burr DC (2000) A cortical area that responds specifically to optic flow, revealed by fMRI. Nat Neurosci 3(12):1322–1328

    Article  PubMed  CAS  Google Scholar 

  50. Ozyurt J, Rutschmann RM, Greenlee MW (2006) Cortical activation during memory-guided saccades. Neuroreport 17 (10):1005–1009

    Google Scholar 

  51. Paivio A (1986) Mental representations: a dual coding approach. Oxford University Press, Oxford

    Google Scholar 

  52. Parker AJ, Cummings BG (2001) Cortical mechanisms of binocular stereoscopic vision. Prog Brain Res 134:205–216

    Article  PubMed  CAS  Google Scholar 

  53. Pasternak T, Greenlee MW (2005) Working memory in primate sensory systems. Nat Rev Neurosci 6 (2):97–107

    Google Scholar 

  54. Press WA, Brewer AA, Dougherty RF, Wade AR, Wandell BA (2001) Visual areas and spatial summation in human visual cortex. Vision Res 41:1321–1332

    Article  PubMed  CAS  Google Scholar 

  55. Raabe M, Acs F, Rutschmann RM, Greenlee MW (2006) Neural correlates of the perception of coherent motion-in-depth and self-motion as measured by fMRI. Perception Suppl 184

    Google Scholar 

  56. Rothmayr C, Baumann O, Rutschmann RM, Greenlee MW (2007) Dissociation of neural correlates of verbal and non-verbal visual working memory with different delays. (submitted for publication)

    Google Scholar 

  57. Rutschmann RM, Greenlee MW (2004) BOLD response in dorsal areas varies with relative disparity level. Neuroreport 15(4):615–619

    Article  PubMed  Google Scholar 

  58. Rutschmann RM, Schrauf M, Greenlee MW (2000) Brain activation during dichoptic presentation of optic flow stimuli. Exp Brain Res 134(4):533–537

    Article  PubMed  CAS  Google Scholar 

  59. Schira MM, Wade AR, Tyler CW. Two-dimensional mapping of the central and parafoveal visual field to human visual cortex. J Neurophysiol. 2007;97(6):4284-95.

    Article  PubMed  Google Scholar 

  60. Schluppeck D, Glimcher P, Heeger DJ (2005) Topographic organization for delayed saccades in human posterior parietal cortex. J Neurophysiol 94(2):1372–1384

    Article  PubMed  Google Scholar 

  61. Schluppeck D, Curtis CE, Glimcher PW, Heeger DJ (2006) Sustained activity in topographic areas of human posterior parietal cortex during memory-guided saccades. J Neurosci 26(19):5098–5108

    Article  PubMed  CAS  Google Scholar 

  62. Schneider KA, Richter MC, Kastner S (2004) Retinotopic organization and functional subdivisions of the human lateral geniculate nucleus: a high-resolution functional magnetic resonance imaging study. J Neurosci 24(41):8975–8985

    Article  PubMed  CAS  Google Scholar 

  63. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268(5212):889–893

    Article  PubMed  CAS  Google Scholar 

  64. Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294(5545):1350–1354

    Article  PubMed  CAS  Google Scholar 

  65. Singh KD, Smith AT, Greenlee MW (2000) Spatiotemporal frequency and direction sensitivities of human visual areas measured using fMRI. Neuroimage 12(5):550–564

    Article  PubMed  CAS  Google Scholar 

  66. Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J (1998) The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci 18(10):3816–3830

    PubMed  CAS  Google Scholar 

  67. Smith AT, Singh KD, Williams AL, Greenlee MW (2001) Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. Cereb Cortex 11 (12):1182–1190

    Google Scholar 

  68. Smith AT, Wall MB, Williams AL, Singh KD (2006) Sensitivity to optic flow in human cortical areas MT and MST. Eur J Neurosci 23(2):561–569

    Article  PubMed  CAS  Google Scholar 

  69. Sun P, Gartner JL, Costagli M, Waggoner RA, Tanaka K, Cheng K (2006) Direct demonstration of tuning to stimulus orientation in human V1: a high-resolution fMRI study with a continuous stimulation paradigm and a differential mapping method. Hum Brain Mapp Suppl S112

    Google Scholar 

  70. Sylvester R, Haynes JD, Rees G (2005) Saccades differentially modulate human LGN and V1 responses in the presence and absence of visual stimulation. Curr Biol 15(1):37–41

    Article  PubMed  CAS  Google Scholar 

  71. Tootell RB, Hadjikhani N (2001) Where is ‘dorsal V4’ in human visual cortex? Retinotopic, topographic and functional evidence. Cereb Cortex 11(4):298–311

    Article  PubMed  CAS  Google Scholar 

  72. Tootell RBH, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230

    PubMed  CAS  Google Scholar 

  73. Tootell RBH, Dale AM, Sereno MI, Malach R (1996) New images from human visual cortex. Trends Neurosci 95:818–824

    Google Scholar 

  74. Tootell RB, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17(18):7060–7078

    PubMed  CAS  Google Scholar 

  75. Tootell RBH, Hadjikhani N, Hall EK, Marrett S, Vanduffel W, Vaughan JT, Dale AM (1998a) The retinotopy of visual spatial attention. Neuron 21:1409–1422

    Article  PubMed  CAS  Google Scholar 

  76. Tootell RBH, Hadjikhani NK, Vanduffel W, Liu AK, Mendola JD, Sereno MI, Dale AM (1998b) Functional analysis of primary visual cortex (V1) in humans. Proc Natl Acad Sci USA 95:811–817

    Article  PubMed  CAS  Google Scholar 

  77. Tsao DY, Vanduffel W, Sasaki Y, Fize D, Knutsen TA, Mandeville JB, Wald LL, Dale AM, Rosen BR, Van Essen DC, Livingstone MS, Orban GA, Tootell RBH (2003) Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron 39:555–568

    Article  PubMed  CAS  Google Scholar 

  78. Tse PU, Martinez-Conde S, Schlegel AA, Macknik SL (2005) Visibility, visual awareness, and visual masking of simple unattended targets are confined to areas in the occipital cortex beyond human V1/V2.Proc Natl Acad Sci USA 102(47):17178–17183

    Google Scholar 

  79. Tse PU, Baumgartner F, Greenlee MW (2007) Neural correlates of microsaccades in human retinotopic cortex. (submitted for publication)

    Google Scholar 

  80. Vallines I, Greenlee MW (2006) Saccadic suppression of retinotopically localized blood oxygen level-dependent responses in human primary visual area V1. J Neurosci 26(22):5965–5969

    Article  PubMed  CAS  Google Scholar 

  81. Van Essen DC (2004) Surface-based approaches to spatial localization and registration in primate cerebral cortex. Neuroimage 23 [Suppl 1]:S97–S107

    Google Scholar 

  82. Van Essen DC, Drury HA, Joshi S, Miller MI (1998) Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. Proc Natl Acad Sci USA 95(3):788–795

    Article  PubMed  Google Scholar 

  83. Van Oostende S, Sunaert S, Van Hecke P, Marchal G, Orban GA (1997) The kinetic occipital (KO) region in man: an fMRI study. Cereb Cortex 7:690–701

    Article  PubMed  Google Scholar 

  84. Vanni S, Henriksson L, James AC (2005) Multifocal fMRI mapping of visual cortical areas. Neuroimage 27(1):95–105

    Article  PubMed  CAS  Google Scholar 

  85. Wade AR, Wandell BA (2002) Chromatic light adaptation measured using functional magnetic resonance imaging. J Neurosci 22(18):8148–57

    PubMed  CAS  Google Scholar 

  86. Wade AR, Brewer AA, Rieger JW, Wandell BA (2002) Functional measurements of human ventral occipital cortex: retinotopy and colour. Philos Trans R Soc Lond B Biol Sci 357(1424):963–973

    Article  PubMed  Google Scholar 

  87. Wandell BA, Brewer AA, Dougherty RF (2005) Visual field map clusters in human cortex. Philos Trans R Soc Lond B Biol Sci 360(1456):693–707

    Article  PubMed  Google Scholar 

  88. Warnking J, Dojat M, Guerin-Dugue A, Delon-Martin C, Olympieff S, Richard N, Chehikian A, Segebarth C (2002) fMRI retinotopic mapping – step by step. Neuroimage 17(4):1665–1683

    Article  PubMed  CAS  Google Scholar 

  89. Zeki S, Bartels A (1999) The clinical and functional measurement of cortical (in)activity in the visual brain, with special reference to the two subdivisions (V4 and V4 alpha) of the human colour centre. Philos Trans R Soc Lond B Biol Sci 354(1387):1371–1382

    Article  PubMed  CAS  Google Scholar 

  90. Zeki S, Perry RJ, Bartels A (2003) The processing of kinetic contours in the brain. Cerebr Cortex 13:193–203

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Birgit Lorenz Francois-Xavier Borruat

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greenlee, M., Tse, P. (2008). Functional Neuroanatomy of the Human Visual System: A Review of Functional MRI Studies. In: Lorenz, B., Borruat, FX. (eds) Pediatric Ophthalmology, Neuro-Ophthalmology, Genetics. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33679-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33679-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33678-5

  • Online ISBN: 978-3-540-33679-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics