Skip to main content

The Geologic Record of Destructive Impact Events on Earth

  • Chapter
Book cover Comet/Asteroid Impacts and Human Society

Abstract

The Earth is the most geologically active of the terrestrial planets and it has retained the poorest sample of the record of hypervelocity impact by interplanetary bodies throughout geologic time. Although the surviving sample of impact structures is small, the terrestrial impact record has played a major role in understanding and constraining cratering processes, as well as providing important ground-truth information on the three dimensional lithological and structural character of impact structures (Grieve and Therriault 2004). Recently, there has been a growing awareness in the earth-science community that impact is also potentially important as a stochastic driving force for changes to the terrestrial environment. This has stemmed largely from: the discovery of chemical and physical evidence for the involvement of impact at the Cretaceous-Tertiary (K/T) boundary and the associated mass extinction event (e.g. Alvarez et al. 1980; Smit and Hertogen 1980; Bohor et al. 1984), and their relation to the Chicxulub impact structure in the Yucatan Peninsula, Mexico (Hildebrand et al. 1991), the recognition of the resource potential of impact structures, some of which are related to world-class ore deposits, both spatially and genetically (Grieve and Masaitis 1994; Grieve 2005), and the recognition of the potentially disastrous consequences of impacts for human civilization (Gehrels 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramov O, Kring DA (2004) Numerical modeling of an impact-induced hydrothermal system at the Sudbury crater. J Geophys Res 109(10):E10007 1–16

    Article  Google Scholar 

  • Alvarez W, Muller R (1984) Evidence from crater ages of periodic impact on the Earth. Nature 308:712–720

    Article  ADS  Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108

    Article  ADS  Google Scholar 

  • Ariskin AA, Deutsch A, Ostermann M (1999) The Sudbury “Igneous” Complex: simulating phase equilibria and in situ differentiation for two proposed parental magmas. Geol Soc Amer Sp Paper 338:373–387

    Google Scholar 

  • Baski AK (1990) Search for periodicity in global events in the geologic record: Quo vadimus? Geology 18:983–986

    Article  ADS  Google Scholar 

  • Basu AR, Becker L, Jacobsen SB, Petaev MI, Poreda RJ (2003) Chondritic meteorite fragments associated with the Permian-Triassic boundary in Antarctica. Science 302:1388–1392

    Article  ADS  Google Scholar 

  • Becker L, Bunch TE, Hunt AG, Poreda RJ, Rampino M (2001) Impact event at the Permian-Triassic boundary: Evidence from extraterrestrial noble gases in fullerenes. Science 281:1530–1533

    Article  ADS  Google Scholar 

  • Becker L, Basu AR, Harrison TM, Lasky R, Pope KO, Poreda RJ, Nicholson C (2004) Bedout: A possible end-Permian impact crater offshore northwestern Australia. Science 304:1469–1476

    Article  ADS  Google Scholar 

  • Beerling DJ, Kump LR, Lomax BH, Royer DL, Upchurch GR Jr (2002) An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils. Proc Natl Acad Sci USA 99: 7836–7840

    Article  ADS  Google Scholar 

  • Birks JW, Crutzen PJ, Roble RG (2007) Frequent ozone depletion resulting from impacts of comets and asteroids. Chapter 13 of this volume

    Google Scholar 

  • Blum SD, Chamberlain CP, Hingston MP, Koeberl C, Marin LE, Sharpton VL, Shuraytz BC (1993) Isotopic comparison of K-T boundary impact glass with melt rock from the Chicxulub and Manson impact structures. Nature 364:325–327

    Article  ADS  Google Scholar 

  • Bodiselitsch B, Coccioni R, Koeberl C, Montanari A (2004) Delayed climate cooling in the Late Eocene caused by multiple impacts: high-resolution geochemical studies at Massignano, Italy. Earth Planet Sci Lett 223:283–302

    Article  ADS  Google Scholar 

  • Bohor B, Foord EE, Modreski PJ, Triplehorn DM (1984) Mineralogic evidence for an impact event at the Cretaceous-Tertiary boundary. Science 224:867–869

    Article  ADS  Google Scholar 

  • Bottomley R, Grieve RAF, Masaitis V, York D (1997) The age of the Popigai impact event and its relations to events at the Eocene/Oligocene boundary. Nature 388:365–368

    Article  ADS  Google Scholar 

  • Bryant E (2004) Geological and cultural evidence for cosmogenic tsunami. Paper presented at the ICSU Workshop on Comet/Asteroid Impacts and Human Society, Tenerife, Canary Islands.

    Google Scholar 

  • Bunch TE (1968) Some characteristics of selected minerals from craters. In: French BM, Short NM (eds) Shock metamorphism of Natural Materials. Mono Book Corp, Baltimore, pp 413–432

    Google Scholar 

  • Campins H, Swindle TD, Kring DA (2004) Evaluating comets as a source of Earth’s water. In: Seckbach J (ed) Origins: genesis, evolution and diversity of life. Kluwer Academic Publishers, Dortrecht Boston New York, pp 567–590

    Google Scholar 

  • Chao ECT (1967) Shock effects in certain rock-forming minerals. Science 156:192–202

    Article  ADS  Google Scholar 

  • Chao ECT, Fahey JJ, Littler J, Milton DJ (1962) Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona. J Geophys Res 67:419–421

    Article  ADS  Google Scholar 

  • Chapman CR (2004) The asteroid impact hazard and interdisciplinary issues. Paper presented at the ICSU Workshop on Comet/Asteroid Impacts and Human Society, Tenerife, Canary Islands.

    Google Scholar 

  • Chyba CF (1993) The violent environment of the origin of life: progress and uncertainties. Geochim Cosmochim Acta 57:3351–3358

    Article  ADS  Google Scholar 

  • Cohen BA, Kring DA, Swindle TD (2000) Support for the lunar cataclysm hypothesis from lunar meteorite impact ages. Science 290:1745–1756

    Article  ADS  Google Scholar 

  • Daubar IJ, Kring DA (2001) Impact-induced hydrothermal systems: heat sources and lifetimes. Lunar Planet Sci XXXII, Abstract 1727

    Google Scholar 

  • Davis M, Hut P, Muller RA (1984) Extinction of species by cometary showers. Nature 308:715–717

    Article  ADS  Google Scholar 

  • Dence MR (1972) The nature and significance of terrestrial impact structures. 24th Inter Geol Congr Section 15:77–89

    Google Scholar 

  • Deutsch A, Schärer U (1994) Dating terrestrial impact events. Meteor 29:301–322

    ADS  Google Scholar 

  • D’Hondt S, Donaghay P, Lindinger M, Luttenberg D, Zachos JC (1998) Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction. Science 282:276–279

    Article  ADS  Google Scholar 

  • Dietz RS (1968) Shatter cones in cryptoexplosion structures. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono, Baltimore, pp 267–285

    Google Scholar 

  • Dore MHI (2004) The economic consequences of disasters due to asteroid and comet impacts, small and large. Paper presented at the ICSU Workshop on Comet/Asteroid Impacts and Human Society, Tenerife, Canary Islands

    Google Scholar 

  • Durda DD, Kring DA (2004) Ignition threshold for impact-generated fires. J Geophys Res 109(8):E08004 1–14

    Article  Google Scholar 

  • Engelhardt W von (1990) Distribution, petrography and shock metamorphism of the ejecta of the Ries crater in Germany — a review. Tectonophysics 171:259–273

    Article  ADS  Google Scholar 

  • Faggart BE, Basu AR, Tatsumoto M (1985) Origin of the Sudbury complex by meteoritic impact: Neodymium isotopic evidence. Science 230:436–439

    Article  ADS  Google Scholar 

  • Farley KA (2001) Extraterrestrial helium in seafloor sediments: Identification, characteristics and accretion rate over geologic time. In: Peucker-Ehrenbrink B, Schmitz B (eds) Accretion of extraterrestrial matter throughout Earth’s history. Kulwer Academic/Plenum Publishers, New York, pp 179–204

    Google Scholar 

  • French BM (1998) Traces of catastrophe — a handbook of shock metamorphic effects in terrestrial meteorite craters. LPI Contrib 954, Lunar and Planet Inst, Houston

    Google Scholar 

  • Galeotti S, Brinkhuis H, Huber M (2004) Records of post-Cretaceous-Tertiary boundary millennial scale cooling of western Tethys: a smoking gun for the impact-winter hypothesis. Geol 32:529–532

    Article  ADS  Google Scholar 

  • Gehrels T (1994) (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson

    Google Scholar 

  • Gersonde R, Abelmann A, Bleil V, Bostwick JA, Diekmann B, Flores JA, Gohl K, Grahl G, Hagen R, Kuhn G, Kyte FT, Sierro FJ, Völker D, (1997) Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean. Nature 390:357–363

    Article  ADS  Google Scholar 

  • Glass BP, Koeberl C (1999) Ocean Drilling Project Hole 689B spherules and upper Eocene microtektites and clinopyroxene-bearing spherule strewn fields. Meteor Planet Sci 34:185–196

    Google Scholar 

  • Glasstone S, Dolan PJ (1977) The effects of nuclear weapons, 3rd edn. United States Dept Defence and United States Dept Energy, Washington DC

    Google Scholar 

  • Grieve RAF (1997) Target Earth: evidence for large-scale impact events. Ann New York Acad Sci 822: 319–352

    Article  ADS  Google Scholar 

  • Grieve RAF (2005) Economic natural resource deposits at terrestrial impact structures. In: McDonald I et al. (eds) Mineral deposits and Earth evolution. Geol Soc London Spec Publ 248:1–29

    Google Scholar 

  • Grieve RAF, Floran RJ (1978) Manicouagan impact melt, Quebec 2. Chemical interrelations with basement and formational processes. J Geophys Res 83:2761–2771

    ADS  Google Scholar 

  • Grieve RAF, Masaitis VL (1994) The economic potential of terrestrial impact craters. Inter Geol Rev 36: 105–151

    Article  Google Scholar 

  • Grieve RAF, Pilkington M (1996) The signature of terrestrial impacts. AGSO J Aust Geol Geophys 16: 399–420

    Google Scholar 

  • Grieve RAF, Shoemaker EM (1994) The record of past impacts on Earth. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 417–462

    Google Scholar 

  • Grieve RAF, Therriault AM (2000) Vredefort, Sudbury, Chicxulub: Three of a kind? Ann Rev Earth Planet Sci 28:305–338

    Article  ADS  Google Scholar 

  • Grieve RAF, Therriault AM (2004) Observations at terrestrial impact structures: Their utility in constraining crater formation. Met Planet Sci 39:199–216

    ADS  Google Scholar 

  • Grieve RAF, Rupert JB, Goodacre AK, Sharpton VL (1988) Detecting a periodic signal in the terrestrial cratering record. Proc 18th Lunar and Planet Sci Conf, pp 375–382

    Google Scholar 

  • Grieve RAF, Langenhorst F, Stöffler D (1996) Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience. Meteor Planet Sci 31:6–35

    ADS  Google Scholar 

  • Heck PR, Baur H, Halliday N, Schmitz B, Wieler R (2004) Fast delivery of meteorites to Earth after a major asteroid collision. Nature 430:323–325

    Article  ADS  Google Scholar 

  • Hesiler J, Tremaine S (1989) How dating uncertainties affect the detection of periodicity in extinctions and craters. Icarus 77:213–219

    Article  ADS  Google Scholar 

  • Hildebrand AR, Camargo AZ, Jacobsen SB, Boynton WV, Kring DA, Penfield GT, Pilkington M (1991) Chicxulub crater: A possible Cretaceous-Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geol 19:867–871

    Article  ADS  Google Scholar 

  • Hörz F (1968) Statistical measurement of deformation structures and refractive indices in experimentally shock loaded quartz. In: French BM and Short NM (eds) Shock Metamorphism of Natural Materials. Mono, Baltimore, pp 243–253

    Google Scholar 

  • Jahn B, Floran RJ, Simonds CH (1978) Rb-Sr isochron age of the Manicouagan melt sheet, Quebec, Canada. J Geophys Res 83:2799–2803

    ADS  Google Scholar 

  • Jetsu L, Pelt J (2000) Spurious periods in the terrestrial impact record. Astron Astrophys 353:409–418

    ADS  Google Scholar 

  • Kettrup B, Agrinier P, Deutsch A, Ostermann M (2000) Chicxulub impactites: geochemical clues to precursor rocks. Met Planet Sci 35:1129–1158

    Google Scholar 

  • Kettrup B, Deutsch A, Masaitis VL (2003) Homogeneous impact melts produced by a heterogeneous target? Sr-Nd isotopic evidence from the Popigai crater, Russia. Geochim Cosmochim Acta 67:733–750

    Article  Google Scholar 

  • Kieffer SW (1971) Shock metamorphism of the Coconino sandstone at Meteor Crater, Arizona. J Geophy Res 76:5449–5473

    ADS  Google Scholar 

  • Koeberl C (2001) The sedimentary record of impact events. In: Peucker-Ehrenbrink B, Schmitz B (eds) Accretion of extraterrestrial matter throughout Earth’s history, Kluwer Academic/Plenum Publishers, New York, pp 333–368

    Google Scholar 

  • Koeberl C, Reimold WV, Shirey SB (1996) Re-Os isotope and geochemical study of the Vredefort Granophyre: Clues to the origin of the Vredefort structure, South Africa. Geology 24:913–916

    Article  ADS  Google Scholar 

  • Kring DA (1993) The Chicxulub impact event and possible causes of K/T boundary mass extinctions. In: Boaz D, Dornan M (eds) Proceedings First Annual Symposium of Fossils in Arizona, Mesa Southwest Mus and Southwest Paleontol Soc. Mesa, Arizona, pp 63–79

    Google Scholar 

  • Kring DA (1997) Air blast produced by the Meteor Crater impact event and reconstruction of the affected environment. Met Planet Sci 32:517–530

    ADS  Google Scholar 

  • Kring DA (2000) Impact events and their effect on the origin, evolution, and distribution of life. GSA Today 10(8):1–7

    Google Scholar 

  • Kring DA (2002) Reevaluating the cratering kill curve. Met Planet Sci 37:1648–1649

    ADS  Google Scholar 

  • Kring DA (2003) Environmental consequences of impact cratering events as a function of ambient conditions on Earth. Astrobiology 3:133–152

    Article  ADS  Google Scholar 

  • Kring DA, Boynton WV (1992) Petrogenesis of an augite-bearing melt rock in the Chicxulub structure and its relation to K/T impact spherules in Haiti. Nature 358:141–144

    Article  ADS  Google Scholar 

  • Kring DA, Cohen BA (2002) Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga. J Geophys Res 107:10.1029/2001JE001529

    Google Scholar 

  • Kring DA, Durda DD (2002) Trajectories and distribution of material ejected from the Chicxulub impact crater: Implications for postimpact wildfires. J Geophys Res 107:10.1029/2001JE001532

    Google Scholar 

  • Kring DA, Hunten DM, Melosh HJ (1996) Impact-induced perturbations of atmospheric sulphur. Earth Planet Sci Lett 140:201–212

    Article  ADS  Google Scholar 

  • Kyte FT, Heath RG, Leinen M, Zhou L (1993) Cenozoic sedimentation history of the central Pacific: Inferences from the elemental geochemistry of core LL44-GPC3. Geochim Cosmochim Acta 57:1719–1740

    Article  ADS  Google Scholar 

  • Kyte FT, Wasson JT, Zhou Z (1988) New evidence on the size and possible effects of a late Pliocene oceanic asteroid impact. Science 241:63–65

    Article  ADS  Google Scholar 

  • Langenhorst F (2002) Shock metamorphism of some minerals: Basic introduction and microstructural observations. Bull Czech Geol Surv 77:265–282

    Google Scholar 

  • Langenhorst F, Deutsch A (1994) Shock experiments on pre-heated α and β-quartz: I. Optical and density data. Earth Planet Sci Lett 125:407–420

    Article  ADS  Google Scholar 

  • Langenhorst F, Deutsch A (1998) Minerals in terrestrial impact structures and their characteristic features. In: Marfunin AS (ed) Advanced Mineralogy 3. Springer-Verlag, Berlin, pp 95–119

    Google Scholar 

  • Lindstrom M (2003) An array of offshore impact craters on mid-Ordovician Baltica. Third Inter Conf Large Meteorite Impacts, Lunar and Planetary Institute, Houston, Texas, abstract 4029

    Google Scholar 

  • Maher KA, Stevenson DJ (1988) Impact frustration of the origin of life. Nature 331:612–614

    Article  ADS  Google Scholar 

  • Masaitis VL (1998) Popigai crater: origin and distribution of diamond-bearing impactites. Met Planet Sci 33:349–359

    ADS  Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press, New York

    Google Scholar 

  • Melosh HJ (2004) Indirect physical effects of comet and asteroid impacts. Paper presented at the ICSU Workshop on Comet/Asteroid Impacts and Human Society, Tenerife, Canary Islands.

    Google Scholar 

  • Melosh HJ, Latham D, Schneider NM, Zahnle KJ (1990) Ignition of global wildfires at the K/T boundary. Nature 343:251–154

    Article  ADS  Google Scholar 

  • Milton DJ (1977) Shatter cones — an outstanding problem in shock mechanics. In: Pepin RO and Merrill RB, Roddy DJ (eds) Impact and Explosion Cratering. Pergamon, New York, pp 703–714

    Google Scholar 

  • Morgan J, Warner M (1999) Chicxulub: The third dimension of a multi-ring impact basin. Geology 27: 407–410

    Article  ADS  Google Scholar 

  • Morgan J, Warner M, the Chicxulub Working Group (1997) Size and morphology of the Chicxulub impact crater. Nature 390:472–476

    Article  ADS  Google Scholar 

  • Morgan J, Grieve RAF, Warner M (2002) Geophysical constraints on the size and structure of the Chicxulub impact center. Geol Soc Amer Sp Pap 356:39–46

    Google Scholar 

  • Neukum G, Ivanov BA (1994) Crater size distributions and impact probabilities on Earth from lunar, terrestrial-planet and asteroid cratering data. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 359–416

    Google Scholar 

  • Ormõ J, Blomqvist G, Strukell EFF, Tõrnberg R (1999) Mutually constrained geophysical data for evaluating a proposed impact structure: Lake Hummeln, Sweden. Tectonophys 311:155–177

    Article  Google Scholar 

  • Palme H, Goebel E, Grieve RAF (1979) The distribution of volatile and siderophile elements in the impact melt of East Clearwater (Quebec). Proc 10th Lunar and Planet Sci Conference, pp 2465–2492

    Google Scholar 

  • Palme H, Grieve RAF, Wolf R (1981) Identification of the projectile at Brent crater, and further considerations of projectile types at terrestrial craters. Geochim Cosmochim Acta 45:2417–2424

    Article  ADS  Google Scholar 

  • Peucker-Ehrenbrink B (2001) Iridium and osmium as tracers of extraterrestrial matter in marine sediments. In: Peucker-Ehrenbrink B, Schmitz B (eds) Accretion of extraterrestrial matter throughout Earth’s history. Kulwar Academic/Plenum Publishers, New York, pp 163–178

    Google Scholar 

  • Pierazzo E, Chyba CF (1999) Amino acid survival in large cometary impacts. Met Planet Sci 34:909–918

    ADS  Google Scholar 

  • Pierazzo E, Kring DA, Melosh HJ (1998) Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases. J Geophys Res 103:28607–28625

    Article  ADS  Google Scholar 

  • Poag CW, Aubrey MP (1995) Upper Eocene impactites of the U.S. east coast: Depositional origins, biostratigraphic framework, and correlation. Palios 10:16–43

    Article  Google Scholar 

  • Pope KO, Baines KH, Ocampo AC, Ivanov BA (1997) Energy, volatile production and climatic effects of the Chicxulub Cretaceous/Tertiary impact. J Geophys Res 102: 21, 645–21, 664

    Article  ADS  Google Scholar 

  • Rampino MR, Haggerty BM (1996) The’ shiva hypothesis’: impacts, mass extinctions and the galaxy. Earth, Moon, and Planets 72:441–46

    Article  ADS  Google Scholar 

  • Rampino MR, Stothers RB (1984) Geological rhythms and cometary impacts. Science 226:1427–1431

    Article  ADS  Google Scholar 

  • Raup DM, Sepkoski JJ (1984) Periodicity of extinctions in the geologic past. Proc Nat Acad Sci 81:801–805

    Article  ADS  Google Scholar 

  • Retallack GJ, Amber CP, Holser WT, Krull ES, Kyle FT, Seyedolai A (1998) Search for evidence of impact at the Permian-Triassic boundary in Antarctica and Australia. Geol 26:979–982

    Article  ADS  Google Scholar 

  • Ryder G (2002) Mass flux in the Earth-Moon system and benign implications for the origin of life on Earth. J Geophy Res E Planets 107:6-1–6-14

    Google Scholar 

  • Sagy A, Fineberg J, Reches Z (2002) Dynamic fracture by large extra-terrestrial impacts as the origin of shatter cones. Nature 418:310–313

    Article  ADS  Google Scholar 

  • Schmitz B, Peucker-Ehrenbrink B, Tassinari M (2001) A rain of ordinary chondritic meteorites in the early Ordovician. Earth Planet Sci Lett 194:1–15

    Article  ADS  Google Scholar 

  • Sharpton VL, Burke K, Camargo-Zanoguera A, Hall SA, Lee DS, Marin LE, Quezaela-Muneton JM, Spudis PD and Urrita-Fucugauchi J, Suarez-Reynoso G (1993) Chicxulub multiring impact basin: Size and other characteristics derived from gravity analysis. Science 26:1564–1567

    Article  ADS  Google Scholar 

  • Smit J, Hertogen J (1980) An extraterrestrial event at the Cretaceous-Tertiary boundary. Nature 285: 158–200

    Article  ADS  Google Scholar 

  • Snyder D, Hobbs RW, the Chicxulub Working Group (1999) Ringed structural zones with deep roots formed by the Chicxulub impact. J Geophys Res 104:743–755

    Article  Google Scholar 

  • Spray JG, Thompson LM (1995) Friction melt distribution in terrestrial multi-ring impact basins. Nature 373:130–132

    Article  ADS  Google Scholar 

  • Spudis PD (1993) The geology of multi-ring impact basins. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Stöffler D (1971) Progressive metamorphism and classification of shocked and brecciated crystalline rocks in impact craters. J Geophys Res 76:5541–5551

    ADS  Google Scholar 

  • Stöffler D (1972) Deformation and transformation of rock-forming minerals by natural and experimental shock processes. I. Behavior of minerals under shock compression. Fortsch Mineral49: 50–113

    Google Scholar 

  • Stöffler D (1974) Deformation and transformation of rock-forming minerals by natural and experimental shock processes. II. Physical properties of shocked minerals. Fortsch Mineral 51:256–289

    Google Scholar 

  • Stöffler D (1984) Glasses formed by hypervelocity impacts. J Non-Crystalline Solids 7:465–502

    Article  ADS  Google Scholar 

  • Stöffler D, Hornemann U (1972) Quartz and feldspar glasses produced by natural and experimental shock. Meteor 7:371–394

    ADS  Google Scholar 

  • Stöffler D, Langenhorst F (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteor 29:155–181

    ADS  Google Scholar 

  • Stöffler D, Avermann M, Bischoff L, Brockmeyer P, Buhl D, Deutsch A, Lakomy R, Müller-Mohr V (1994) The formation of the Sudbury structure, Canada: Towards a unified impact model. Geol Soc Amer Sp Paper 293:303–318

    Google Scholar 

  • Stothers RB (1993) Impact cratering at geologic stage boundaries. Geophys Res Lett 20: 887–890

    ADS  Google Scholar 

  • Stothers RB, Rampino MR (1998) Periodicity in flood basalts, mass extinctions and impacts: A statistical view and a model. Geol Soc Amer Sp Paper 247:9–18

    Google Scholar 

  • Swindle TD, Kring DA (2001) Cataclysm+ cold comets = lots of asteroid impacts. Lunar Planet Sci XXXII, Abstract 1466

    Google Scholar 

  • Tagle R, Claeys P (2004) Comet or asteroid shower in the Late Eocene? Science 305:492–493

    Article  Google Scholar 

  • Tagle R, Claeys P (2005) An ordinary chondrite impactor for Popigai crater, Siberia. Geochim Cosmochim Acta 69(11):2877–2889

    Article  ADS  Google Scholar 

  • Therriault AM, Grieve RAF, Reimold WU (1997) Original size of the Vredefort Structure: Implications for the geological evolution of the Witwatersrand Basin. Met Planet Sci 32:71–77

    Article  ADS  Google Scholar 

  • Therriault AM, Fowler AD, Grieve RAF (2002) The Sudbury Igneous Complex: A differentiated impact melt sheet. Econ Geol 97:1521–1540

    Article  Google Scholar 

  • Toon OB, Covey C, Morrison D, Turco RP, Zahnle K (1997) Environmental perturbations caused by the impacts of asteroids and comets. Rev Geophys 35:41–78

    Article  ADS  Google Scholar 

  • Turtle EP, Pierrazo E, Collins GS, Melosh HJ, Morgan JV, Osinski GR, Reimold WU (2005) Impact structures: What does crater diameter mean? Geol Soc Amer Sp Pap 384:1–24

    Google Scholar 

  • Twiss RS, Moores EM (1992) Structural Geology. WH Freeman, New York

    Google Scholar 

  • Valley JW, King EM, Peck WH, Wilde SA (2002) A cool early Earth. Geol 30:351–354

    Article  ADS  Google Scholar 

  • Vasilyev NV (1998) The Tunguska meteorite problem today. Planet Space Sci 46:129–150

    Article  ADS  Google Scholar 

  • Weismann P (1990) The cometary impact flux at the Earth. Geol Soc Amer Sp Pap 247:171–180

    Google Scholar 

  • Whitehead J, Grieve RAF, Papinastassiou DA, Spray JG, Wasserburg G (2000) Late Eocene impact ejecta: Geochemical and isotopic connections with the Popigai impact structure. Earth Planet Sci Lett 181: 473–487

    Article  ADS  Google Scholar 

  • Wood CA, Head JW (1976) Comparison of impact basins on Mercury, Mars and the Moon. Proc. 7th Lunar Sci Conf, pp 3629–3651

    Google Scholar 

  • Yabushita S (1992) Periodicity and decay of craters over the past 600 Myr. Earth, Moon Planets 58:57–63

    Article  ADS  Google Scholar 

  • Yabushita S (2004) A spectral analysis of the periodicity hypothesis in cratering records. Monthly Notices-Roy Astro Soc 355: 51–56

    Article  ADS  Google Scholar 

  • Zahnle KS (1990) Atmospheric chemistry by large impacts. Geol Soc Amer Sp Pap 247:271–288

    Google Scholar 

  • Zahnle KJ, Sleep NH (1997) Impacts and the early evolution of life. In: Chyba CF, McKay CP, Thomas PJ (eds) Comets and the Origin and Evolution of Life, Springer-Verlag, New York, pp 175–208

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grieve, R.A.F., Kring, D.A. (2007). The Geologic Record of Destructive Impact Events on Earth. In: Bobrowsky, P.T., Rickman, H. (eds) Comet/Asteroid Impacts and Human Society. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32711-0_1

Download citation

Publish with us

Policies and ethics