Skip to main content

Decoherence and the Foundations of Quantum Mechanics

  • Chapter

Part of the book series: The Frontiers Collection ((FRONTCOLL))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bub, Interpreting the Quantum World (Cambridge University Press, Cambridge 1997), p 212

    MATH  Google Scholar 

  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge 2000)

    MATH  Google Scholar 

  3. M. Schlosshauer, “Experimental motivation and empirical consistency in minimal no-collapse quantum mechanics,” Annals of Physics 321, 112–149 (2006)

    Article  MATH  ADS  Google Scholar 

  4. For more detailed reviews of decoherence, we recommend the following. For a review paper that that deals comprehensively with many of the more technical aspects of decoherence, including an overview of recent experimental advances, see W. H. Zurek, “Decoherence, einselection, and the quantum origins of the classical,” Reviews of Modern Physics 75, 715–775 (2003). E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I.-O. Stamatescu, Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn (Springer, New York 2003) provides an extensive description of the decoherence program as a whole. Finally, a recent review paper of one of us discusses in great detail the foundational implications of decoherence: M. Schlosshauer, “Decoherence, the measurement problem, and interpretations of quantum mechanics,” Reviews of Modern Physics 76, 1267–1305 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  5. E. Joos and H. D. Zeh, “The emergence of classical properties through interaction with the environment,” Zeitschrift für Physik B 59, 223–243 (1985); M. Tegmark, “Apparent wave function collapse caused by scattering,” Foundations of Physics Letters 6, 571–590 (1993)

    Article  ADS  Google Scholar 

  6. H.-D. Zeh, “On the interpretation of measurement in quantum theory,” Foundations of Physics 1, 69–76 (1970). H.-D. Zeh, “The problem of conscious observation in quantum mechanical description,” Foundation of Physics Letters 13, 221–233 (2000). N. P. Landsman, “Observation and superselection in quantum mechanics,” Studies in the History and Philosophy of Modern Physics 26, 45–73 (1995)

    Article  ADS  Google Scholar 

  7. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin 1932)

    MATH  Google Scholar 

  8. Joos and Zeh, “The emergence of classical properties” (Ref 5)

    Article  ADS  Google Scholar 

  9. An overview of such experiments involving mesoscopic “Schrödinger kittens” can be found in Schlosshauer, “Experimental motivation and empirical consistency” (Ref 3).

    Article  MATH  ADS  Google Scholar 

  10. W. H. Zurek, “Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?,” Physical Review D 24, 1516–1525 (1981), p 1519

    Article  MathSciNet  ADS  Google Scholar 

  11. W. H. Zurek, “Preferred states, predictabilty, classicality, and the environment-induced decoherence,” Progress of Theoretical Physics 89, 281–312 (1993). W. H. Zurek, S. Habib, and J. P. Paz, “Coherent states via decoherence,” Physical Review Letters 70, 1187–1190 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  12. Zurek, “Preferred states” (Ref 11); Zurek, “Decoherence, einselection, and the existential interpretation” (The Rough Guide),” Philosophical Transactions of the Royal Society of London, Series A 356, 1793–1821 (1998); Zurek, “Decoherence, einselection, and the quantum origins of the classical” (Ref 4); and Zurek, et al., “Coherent states via decoherence” (Ref 11)

    Article  MathSciNet  ADS  Google Scholar 

  13. O. Pessoa, Jr., “Can the decoherence approach help to solve the measurement problem?,” Synthese 113, 323–346 (1999), p 432

    Article  MathSciNet  Google Scholar 

  14. Landsman, “Observation and superselection in quantum mechanics” (Ref 6) pp 45–46

    Article  MathSciNet  Google Scholar 

  15. H. Everett, “‘Relative state’ formulation of quantum mechanics,” Reviews of Modern Physics 29, 454–462 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  16. B. van Fraassen, Quantum Mechanics: An Empiricist View (Clarendon Press, Oxford 1991)

    Google Scholar 

  17. G. C. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopic and macroscopic systems,” Physical Review D 34, 470–491 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  18. R. B. Griffiths, “Consistent histories and the interpretation of quantum mechanics,” Journal of Statistical Physics 36, 219–272 (1984). For a review see R. Omnès, “Consistent interpretations of quantum mechanics,” Reviews of Modern Physics 64, 339–382 (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. D. Bohm, “A suggested interpretation of the quantum theory in terms of ‘hidden variables’,” I and II, Physical Review 85, 166–193 (1952). D. Bohm and J. Bub, “A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory,” Reviews of Modern Physics 38, 453–469 (1966)

    MATH  MathSciNet  ADS  Google Scholar 

  20. For a more detailed treatment, see Schlosshauer, “Decoherence” (Ref 4).

    Article  ADS  Google Scholar 

  21. See, for example, Joos and Zeh, “The emergence of classical properties” (Ref 5); W. H. Zurek, “Decoherence, einselection, and the existential interpretation” (Ref 12); M. Tegmark, “The interpretation of quantum mechanics: Many worlds or many words?,” Fortschritte der Physik 46, 855–862 (1998); Zeh, “The problem of conscious observation” (Ref 6); H.-D. Zeh, “Toward a quantum theory of observation,” Foundations of Physics 3, 109–116 (1973); and Zurek, “Decoherence, einselection, and the quantum origins of the classical” (Ref 4).

    Article  ADS  Google Scholar 

  22. M. Tegmark, “Importance of quantum decoherence in brain processes,” Physical Review E 61, 4194–4206 (2000)

    Article  ADS  Google Scholar 

  23. J. S. Bell, “Against ‘measurement’,” in A. I. Miller (ed), Sixty-Two Years of Uncertainty (Plenum Press, New York 1990) pp 17–31

    Google Scholar 

  24. A. Kent, “Against many worlds interpretations,” International Journal of Modern Physics A 5, 1745 (1990); and Zeh, “Toward a quantum theory of observation,” (Ref 21)

    Article  MathSciNet  ADS  Google Scholar 

  25. B. d’Espagnat, “A note on measurement,” Physics Letters A 282, 133–137 (2000); D. Wallace, “Everett and structure,” Studies in the History and Philosophy of Modern Physics 34, 87–105 (2003)

    Article  MathSciNet  Google Scholar 

  26. D. Dieks, “Modal interpretation of quantum mechanics, measurements, and macroscopic behavior,” Physical Review A 49, 2290–2300 (1994); D. Dieks, “Objectification, measurement and classical limit according to the modal interpretation of quantum mechanics,” in I. Busch, P. Lahti and P. Mittelstaedt (eds), Proceedings of the Symposium on the Foundations of Modern Physics (World Scientific, Singapore 1994) pp 160–167

    Article  ADS  Google Scholar 

  27. M. Hemmo, Quantum Mechanics Without Collapse: Modal Interpretations, Histories and Many Worlds, PhD thesis, University of Cambridge, Department of History and Philosophy of Science (1996); G. Bacciagaluppi and M. Hemmo, “Modal interpretations, decoherence and measurements,” Studies in the History and Philosophy of Modern Physics 27, 239–277 (1996)

    Google Scholar 

  28. G. Bene, “Quantum origin of classical properties within the modal interpretations,” http://arxiv.org/abs/quant-ph/0104112 (2001); and Bacciagaluppi and Hemmo, “Modal interpretations” (Ref 27)

    Google Scholar 

  29. G. Bacciagaluppi, “Delocalized properties in the modal interpretation of a continuous model of decoherence,” Foundations of Physics 30, 1431–1444 (2000)

    Article  MathSciNet  Google Scholar 

  30. M. Donald, “Discontinuity and continuity of definite properties in the modal interpretation,” in D. Dieks and P. Vermaas (eds), The Modal Interpretation of Quantum Mechanics (Kluwer, Dordrecht 1998) pp 213–222

    Google Scholar 

  31. Ghirardi, Rimini and Weber, “Unified dynamics” (Ref 17)

    Article  MathSciNet  ADS  Google Scholar 

  32. J. P. Paz and W. H. Zurek, “Quantum limit of decoherence: Environment induced superselection of energy eigenstates,” Physical Review Letters 82, 5181–5185 (1999)

    Article  ADS  Google Scholar 

  33. J. R. Friedman, V. Patel, W. Chen, S. K. Yolpygo, and J. E. Lukens, “Quantum superposition of distinct macroscopic states,” Nature 406, 43–46 (2000)

    Article  ADS  Google Scholar 

  34. E. Joos, “Comment on ‘Unified dynamics for microscopic and macroscopic systems’,” Physical Review D 36, 3285–3286 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  35. A. I. M. Rae, “Can GRW theory be tested by experiments on SQUIDS?,” Journal of Physics A 23, L57–L60 (1990); E. J. Squires, “Wavefunction collapse and ultraviolet photons,” Physics Letters A 158, 431–432 (1991)

    Article  ADS  Google Scholar 

  36. F. Benatti, G. C. Ghirardi, and R. Grassi, “Quantum mechanics with spontaneous localization and experiments,” in E. G. Beltrametti and J.-M. Lévy-Leblond (eds), Advances in Quantum Phenomena (Plenum Press, New York 1995); and Tegmark, “Apparent wave function collapse” (Ref 5)

    Google Scholar 

  37. A. Albrecht, “Following a ‘collapsing’ wave function,” Physical Review D 48, 3768–3778 (1993); F. Dowker and A. Kent, “Properties of consistent histories, Physical Review Letters 75, 3038–3041 (1995); F. Dowker and A. Kent, “On the consistent histories approach to quantum mechanics,” Journal of Statistical Physics 82, 1575–1646 (1996); M. Gell-Mann and J. Hartle, “Quantum mechanics in the light of quantum cosmology,” in S. Kobayashi, H. Ezawa, Y. Murayama and S. Nomura (eds), Proceedings of the 3rd International Symposium on the Foundations of Quantum Mechanics in the Light of New Technology (Tokyo, Japan, August 1989) (Physical Society of Japan, Tokio 1990) pp 321–343; J. P. Paz and W. H. Zurek, “Environment-induced decoherence, classicality and consistency of quantum histories,” Physical Review D 48, 2728–2738 (1993); and Zurek, “Preferred states” (Ref 11)

    Article  MathSciNet  ADS  Google Scholar 

  38. See, for example, Gell-Mann and Hartle, “Quantum mechanics in the light of quantum cosmology” H. Ezawa, Y. Murayama and S. Nomura (eds), Proceedings of the 3rd International Symposium on the Foundations of Quantum Mechanics in the Light of New Technology (Tokyo, Japan, August 1989) (Physical Society of Japan, Tokio 1990) pp 321–343 (Ref 37); F. Dowker and J. J. Halliwell, “Quantum mechanics of history: The decoherence functional in quantum mechanics,” Physical Review D 46, 1580–1609 (1992); A. Albrecht, “Investigating decoherence in a simple system,” Physical Review D 46, 5504–5520 (1992); Albrecht, “Following a ‘collapsing’ wave function” (Ref 37); Zurek, “Preferred states” (Ref 11); Paz and Zurek, “Environment-induced decoherence” (Ref 37); J. Twamley, “Phase-space decoherence: A comparison between consistent histories and environment-induced super-selection,” Physical Review D 48, 5730–5745 (1993); J. Finkelstein, “On the definition of decoherence,” Physical Review D 47, 5430—5433 (1993); C. Anastopoulos, “Decoherence and classical predictability of phase space histories,” Physical Review E 53, 4711–4728 (1996); M. Gell-Mann and J. B. Hartle, “Strong decoherence,” in D. H. Feng and B. L. Hu (eds), Quantum Classical Correspondence: The 4th Drexel Symposium on Quantum Nonintegrability (International Press, Cambridge, Mass. 1998) pp 3–35; and J. J. Halliwell, “Decoherent histories for spacetime domains,” in J. G. Muga, R. S. Mayato and I. L. Egususquiza (eds), Time in Quantum Mechanics (Springer, Berlin 2001).

    Google Scholar 

  39. Albrecht, “Investigating decoherence” (Ref 38); Albrecht, “Following a ‘collapsing’ wave function” (Ref 37); Gell-Mann and Hartle, “Quantum mechanics in the light of quantum cosmology” (Ref 37); Griffiths, “Consistent histories and the interpretation of quantum mechanics” (Ref 18); Omnès, “Consistent interpretations of quantum mechanics” (Ref 18); R. Omnès, The Interpretation of Quantum Mechanics (Princeton University Press, Princeton 1994); Paz and Zurek, “Environment-induced decoherence” (Ref 37); Twamley “Phase-space decoherence” (Ref 38); and Zurek, “Preferred states” (Ref 11)

    Article  ADS  Google Scholar 

  40. H.-D. Zeh, “There are no quantum jumps, nor are there particles!,” Physics Letters A 172, 189–192 (1993); H.-D. Zeh, “Why Bohm’s quantum theory?,” Foundations of Physics Letters 12, 197 (1999); H.-D. Zeh, “There is no ‘first’ quantization,” Physics Letters A 309, 329–334 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  41. D. Bohm and B. Hiley, The Undivided Universe (Routledge, London 1993)

    MATH  Google Scholar 

  42. V. Allori, Decoherence and the Classical Limit of Quantum Mechanics, PhD thesis, Physics Department, University of Genova (2001); V. Allori, D. Dürr, S. Goldstein, and N. Zanghì, “Seven steps towards the classical world,” Journal of Optics B: Quantum and Semiclassical Optics 4, S482–S488 (2002); V, Allori, and N. Zanghì, “On the classical limit of quantum mechanics,” Biannual IQSA Meeting (Cesena, Italy, 2001), http://arxiv.org/abs/quant-ph/0112009; D. M. Appleby, “Bohmian trajectories of an isolated particle,” Foundations of Physics 29, 1863–1884 (1999); A. S. Sanz and F. Borondo, “A Bohmian view on quantum decoherence,” http://arxiv.org/abs/quant-ph/0310096 (2003); and Zeh, “Why Bohm’s quantum theory?” (Ref 40)

    Google Scholar 

  43. Tegmark, “The interpretation of quantum mechanics: Many worlds or many words?” (Ref 21), p 855

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schlosshauer, M., Fine, A. (2007). Decoherence and the Foundations of Quantum Mechanics. In: Quantum Mechanics at the Crossroads. The Frontiers Collection. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-32665-6_7

Download citation

Publish with us

Policies and ethics