Skip to main content

Pseudo-random Graphs

  • Chapter

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 15))

Abstract

Random graphs have proven to be one of the most important and fruitful concepts in modern Combinatorics and Theoretical Computer Science. Besides being a fascinating study subject for their own sake, they serve as essential instruments in proving an enormous number of combinatorial statements, making their role quite hard to overestimate. Their tremendous success serves as a natural motivation for the following very general and deep informal questions: what are the essential properties of random graphs? How can one tell when a given graph behaves like a random graph? How to create deterministically graphs that look random-like? This leads us to a concept of pseudo-random graphs.

Research supported in part by a USA-Israel BSF Grant, by a grant from the Israel Science Foundation and by a Bergmann Memorial Grant.

Research supported in part by NSF grants DMS-0355497, DMS-0106589, and by an Alfred P. Sloan fellowship. Part of this research was done while visiting Microsoft Research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon, The number of spanning trees in regular graphs, Random Structures and Algorithms 1 (1990), 175–181.

    Article  MATH  MathSciNet  Google Scholar 

  2. N. Alon, Restricted colorings of graphs, in: “Surveys in Combinatorics”, Proc. 14th British Combinatorial Conference, London Math. Society Lecture Notes Series 187, ed. by K. Walker, Cambridge University Press, 1993, 1–33.

    Google Scholar 

  3. N. Alon, Explicit Ramsey graphs and orthonormal labelings, The Electronic J. Combinatorics 1 (1994), R12, 8pp.

    Google Scholar 

  4. N. Alon, Tough Ramsey graphs without short cycles, J. Algebraic Combinatorics 4 (1995), 189–195.

    Article  MATH  Google Scholar 

  5. N. Alon, Bipartite subgraphs, Combinatorica 16 (1996), 301–311.

    Article  MATH  MathSciNet  Google Scholar 

  6. N. Alon, private communication.

    Google Scholar 

  7. N. Alon, I. Benjamini and A. Stacey, Percolation on finite graphs and isoperimetric inequalities, Ann. Probab. 32 (2004), 1727–1745.

    Article  MATH  MathSciNet  Google Scholar 

  8. N. Alon, B. Bollobás, M. Krivelevich and B. Sudakov, Maximum cuts and judicious partitions in graphs without short cycles, J. Combinatorial Theory Ser. B 88 (2003), 329–346.

    Article  MATH  Google Scholar 

  9. N. Alon, R. Duke, H. Lefmann, V. Rödl and R. Yuster, The algorithmic aspects of the regularity lemma, J. Algorithms 16 (1994), 80–109.

    Article  MATH  MathSciNet  Google Scholar 

  10. N. Alon and N. Kahale, Approximating the independence number via the θ-function, Math. Programming 80 (1998), 253–264.

    MathSciNet  Google Scholar 

  11. N. Alon and M. Krivelevich, Constructive bounds for a Ramsey-type problem, Graphs and Combinatorics 13 (1997), 217–225.

    MATH  MathSciNet  Google Scholar 

  12. N. Alon, M. Krivelevich and B. Sudakov, List coloring of random and pseudorandom graphs, Combinatorica 19 (1999), 453–472.

    Article  MATH  MathSciNet  Google Scholar 

  13. N. Alon and P. Pudlak, Constructive lower bounds for off-diagonal Ramsey numbers, Israel J. Math. 122 (2001), 243–251.

    Article  MATH  MathSciNet  Google Scholar 

  14. N. Alon and V. Rödl, Asymptotically tight bounds for some multicolored Ramsey numbers, Combinatorica 25 (2005), 125–141.

    Article  MATH  MathSciNet  Google Scholar 

  15. N. Alon, V. Rödl and A. Ruciński, Perfect matchings in ε-regular graphs, Electronic J. Combinatorics, Vol. 5 (1998), publ. R13.

    Google Scholar 

  16. N. Alon and Y. Roichman, Random Cayley graphs and expanders, Random Structures and Algorithms 5 (1994), 271–284.

    Article  MATH  MathSciNet  Google Scholar 

  17. N. Alon, L. Rónyai and T. Szabó, Norm-graphs: variations and applications, J. Combinatorial Theory Ser. B 76 (1999), 280–290.

    Article  MATH  Google Scholar 

  18. N. Alon and J. Spencer, The probabilistic method, 2nd Ed., Wiley, New York 2000.

    MATH  Google Scholar 

  19. A. Beveridge, A. Frieze and C. McDiarmid, Random minimum length spanning trees in regular graphs, Combinatorica 18 (1998), 311–333.

    Article  MATH  MathSciNet  Google Scholar 

  20. B. Bollobás, Random graphs, 2nd Ed., Cambridge University Press, 2001.

    Google Scholar 

  21. R. C. Bose, Strongly regular graphs, partial geometries, and partially balanced designs, Pacific J. Math. 13 (1963), 389–419.

    MATH  MathSciNet  Google Scholar 

  22. A. Bondy and M. Simonovits, Cycles of even length in graphs, J. Combin. Theory Ser. B 16 (1974), 97–105.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.

    MATH  Google Scholar 

  24. A. E. Brouwer and J. H. van Lint, Strongly regular graphs and partial geometries, in: Enumeration and design, D. M. Jackson and S. A. Vanstone, Eds., Academic Press, 1984, 85–122.

    Google Scholar 

  25. F. R. K. Chung and R. Graham, Sparse quasi-random graphs, Combinatorica 22 (2002), 217–244.

    Article  MATH  MathSciNet  Google Scholar 

  26. F. R. K. Chung, R. L. Graham and R. M. Wilson, Quasi-random graphs, Combinatorica 9 (1989), 345–362.

    Article  MATH  MathSciNet  Google Scholar 

  27. V. Chvátal, Tough graphs and hamiltonian circuits, Discrete Mathematics 5 (1973), 215–218.

    Article  MATH  MathSciNet  Google Scholar 

  28. V. Chvátal, Hamiltonian cycles, in: The traveling salesman problem: a guided tour of combinatorial optimization, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, Eds., Wiley 1985, 403–429.

    Google Scholar 

  29. V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972), 111–113.

    Article  MATH  MathSciNet  Google Scholar 

  30. C. Cooper, A. Frieze and B. Reed, Random regular graphs of non-constant degree: connectivity and Hamilton cycles, Combinatorics, Probability and Computing 11 (2002), 249–262.

    MATH  MathSciNet  Google Scholar 

  31. H. Davenport, Multiplicative Number Theory, 2nd edition, Springer Verlag, New York, 1980.

    MATH  Google Scholar 

  32. P. Erdős, R. Faudree, C. Rousseau and R. Schelp, On cycle-complete graph Ramsey numbers, J. Graph Theory 2 (1978), 53–64.

    Article  MathSciNet  Google Scholar 

  33. P. Erdős and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960), 17–61.

    Google Scholar 

  34. P. Erdős, A. L. Rubin and H. Taylor, Choosability in graphs, Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium XXVI, 1979, 125–157.

    Google Scholar 

  35. P. Erdős and J. Spencer, Imbalances in k-colorations, Networks 1 (1972), 379–385.

    Article  Google Scholar 

  36. W. Feit and G. Higman, The nonexistence of certain generalized polygons, J. Algebra 1 (1964), 114–131.

    Article  MATH  MathSciNet  Google Scholar 

  37. E. Friedgut, Sharp thresholds of graph properties, and the k-sat problem. With an appendix by Jean Bourgain, Journal Amer. Math. Soc. 12 (1999), 1017–1054.

    MATH  MathSciNet  Google Scholar 

  38. J. Friedman, J. Kahn and E. Szemerédi, On the second eigenvalue in random regular-graphs, Proc. of 21th ACM STOC (1989), 587–598.

    Google Scholar 

  39. J. Friedman, A proof of Alon’s second eigenvalue conjecture, preprint.

    Google Scholar 

  40. A. Frieze, On the value of a random minimum spanning tree problem, Discrete Applied Math. 10 (1985), 47–56.

    Article  MATH  MathSciNet  Google Scholar 

  41. A. Frieze, On the number of perfect matchings and Hamilton cycles in ε-regular non-bipartite graphs, Electronic J. Combinatorics Vol. 7 (2000), publ. R57.

    Google Scholar 

  42. A. Frieze and M. Krivelevich, Hamilton cycles in random subgraphs of pseudorandom graphs, Discrete Math. 256 (2002), 137–150.

    Article  MATH  MathSciNet  Google Scholar 

  43. A. Frieze, M. Krivelevich and R. Martin, The emergence of a giant component in random subgraphs of pseudo-random graphs, Random Structures and Algorithms 24 (2004), 42–50.

    Article  MATH  MathSciNet  Google Scholar 

  44. Z. Füredi and J. Komlós, The eigenvalues of random symmetric matrices, Combinatorica 1 (1981), 233–241.

    Article  MATH  MathSciNet  Google Scholar 

  45. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.

    Google Scholar 

  46. C. Godsil and G. Royle, Algebraic graph theory, Springer Verlag, New York, 2001.

    MATH  Google Scholar 

  47. A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdős, in: Combinatorial Theory and its applications, Vol. II, P. Erdős, A. Rényi and V. T. Sós, Eds., Colloq. Math. Soc. J. Bolyai 4, North Holland, Amsterdam, 1970, pp. 601–623.

    Google Scholar 

  48. A. Hoffman, On eigenvalues and colorings of graphs, in: Graph Theory and its Applications, Academic Press, New York, 1970, 79–91.

    Google Scholar 

  49. S. Janson, T. Luczak and A. Ruciński, Random graphs, Wiley, New York, 2000.

    MATH  Google Scholar 

  50. Y. Kohayakawa, V. Rödl and P. Sissokho, Embedding graphs with bounded degree in sparse pseudo-random graphs, Israel Journal of Mathematics 139 (2004), 93–137.

    Article  MATH  MathSciNet  Google Scholar 

  51. Y. Kohayakawa, V. Rödl and M. Schacht, The Turán theorem for random graphs, Combinatorics, Probability, and Computing 13 (2004), 61–91.

    Article  MATH  MathSciNet  Google Scholar 

  52. J. Kollár, L. Rónyai and T. Szabó, Norm-graphs and bipartite Turán numbers, Combinatorica 16 (1996), 399–406.

    Article  MATH  MathSciNet  Google Scholar 

  53. J. Komlós, The blow-up lemma, Combinatorics, Probability and Computing 8 (1999), 161–176.

    Article  MATH  MathSciNet  Google Scholar 

  54. J. Komlós, G. N. Sárközy and E. Szemerédi, The blow-up lemma, Combinatorica 17 (1997), 109–123.

    Article  MATH  MathSciNet  Google Scholar 

  55. J. Komlós and M. Simonovits, Szemerédi Regularity Lemma and its applications in Extremal Graph Theory, in: Paul Erdős is 80 II, Bolyai Soc. Math. Stud. 2, Budapest 1996, 295–352.

    Google Scholar 

  56. J. Komlós and E. Szemerédi, Limit distributions for the existence of Hamilton circuits in a random graph, Discrete Mathematics 43 (1983), 55–63.

    Article  MATH  MathSciNet  Google Scholar 

  57. J. Kratochvil, Zs. Tuza and M. Voigt, New trends in the theory of graph colorings: choosability and list coloring, Contemporary Trends in Discrete Mathematics (R. L. Graham et al., eds.), DIMACS Series in Discrete Math. and Theor. Computer Science 49, Amer. Math. Soc., Providence, RI, 1999, 183–197.

    Google Scholar 

  58. M. Krivelevich and B. Sudakov, Sparse pseudo-random graphs are Hamiltonian, J. Graph Theory 42 (2003), 17–33.

    Article  MATH  MathSciNet  Google Scholar 

  59. M. Krivelevich, B, Sudakov and T. Szabó, Triangle factors in pseudo-random graphs, Combinatorica 24 (2004), 403–426.

    Article  MATH  MathSciNet  Google Scholar 

  60. M. Krivelevich, B. Sudakov and V. Vu, A sharp threshold for network reliability, Combinatorics, Probability and Computing 11 (2002), 465–474.

    Article  MATH  MathSciNet  Google Scholar 

  61. M. Krivelevich, B. Sudakov, V. Vu and N. Wormald, Random regular graphs of high degree, Random Structures and Algorithms 18 (2001), 346–363.

    Article  MATH  MathSciNet  Google Scholar 

  62. F. Lazebnik, V. A. Ustimenko and A. J. Woldar, Polarities and 2k-cycle-free graphs, Discrete Math. 197/198 (1999), 503–513.

    MathSciNet  Google Scholar 

  63. R. Lidl and H. Niederreiter, Finite fields, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  64. L. Lovász, Combinatorial problems and exercises, 2nd Ed., North Holland, Amsterdam, 1993.

    MATH  Google Scholar 

  65. A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), 261–277.

    Article  MATH  MathSciNet  Google Scholar 

  66. F. J. Mac Williams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North Holand, Amsterdam, 1977.

    Google Scholar 

  67. G. Margulis, Probabilistic characteristics of graphs with large connectivity, Problems Info. Transmission 10 (1974), 101–108.

    MATH  MathSciNet  Google Scholar 

  68. G. Margulis, Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators (in Russian) Problemy Peredachi Informatsii 24 (1988), 51–60; translation in: Problems Inform. Transmission 24 (1988), 39–46.

    MathSciNet  Google Scholar 

  69. A. Nilli, On the second eigenvalue of a graph, Discrete Math. 91 (1991), 207–210.

    Article  MATH  MathSciNet  Google Scholar 

  70. L. Posa, Hamiltonian circuits in random graphs, Discrete Math. 14 (1976), 359–364.

    Article  MATH  MathSciNet  Google Scholar 

  71. V. Rödl and A. Ruciński, Perfect matchings in ε-regular graphs and the blow-up lemma, Combinatorica 19 (1999), 437–452.

    Article  MATH  MathSciNet  Google Scholar 

  72. J. Seidel, A survey of two-graphs, in: Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), vol I, Atti dei Convegni Lincei, No. 17, Accad. Naz. Lincei, Rome, 1976, 481–511.

    Google Scholar 

  73. M. Simonovits and V. T. Sós, Szemerédi’s partition and quasirandomness, Random Structures and Algorithms 2 (1991), 1–10.

    Article  MATH  MathSciNet  Google Scholar 

  74. M. Simonovits and V. T. Sós, Hereditary extended properties, quasi-random graphs and not necessarily induced subgraphs, Combinatorica 17 (1997), 577–596.

    Article  MATH  MathSciNet  Google Scholar 

  75. B. Sudakov, T. Szabó and V. H. Vu, A generalization of Turán’s theorem, Journal of Graph Theory 49 (2005), 187–195.

    Article  MATH  MathSciNet  Google Scholar 

  76. T. Szabó, On the spectrum of projective norm-graphs, Information Processing Letters 86 (2003) 71–74.

    Article  MATH  MathSciNet  Google Scholar 

  77. T. Szabó and V. H. Vu, Turán’s theorem in sparse random graphs, Random Structures and Algorithms 23 (2003) 225–234.

    Article  MATH  MathSciNet  Google Scholar 

  78. R. M. Tanner, Explicit concentrators from generalized N-gons, SIAM J. Algebraic Discrete Methods 5 (1984), 287–293.

    Article  MATH  MathSciNet  Google Scholar 

  79. A. Thomason, Pseudo-random graphs, in: Proceedings of Random Graphs, Poznan 1985, M. Karoński, ed., Annals of Discrete Math. 33 (North Holland 1987), 307–331.

    Google Scholar 

  80. A. Thomason, Random graphs, strongly regular graphs and pseudo-random graphs, Surveys in Combinatorics, 1987, C. Whitehead, ed., LMS Lecture Note Series 123 (1987), 173–195.

    Google Scholar 

  81. P. Turán, Egy gráfelméleti szélsőértékfeladatról (in Hungarian), Mat. Fiz. Lapok 48 (1941), 436–452.

    MATH  MathSciNet  Google Scholar 

  82. V. G. Vizing, Coloring the vertices of a graph in prescribed colors (in Russian), Diskret. Analiz. No. 29, Metody Diskret. Anal. v. Teorii Kodov i Shem 101 (1976), 3–10.

    MathSciNet  Google Scholar 

  83. N. C. Wormald, Models of random regular graphs, in: Surveys in Combinatorics, 1999, J. D. Lamb and D. A. Preece, eds, pp. 239–298.

    Google Scholar 

  84. V. Vu, On some degree conditions which guarantee the upper bound on chromatic (choice) number of random graphs, J. Graph Theory 31 (1999), 201–226.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 János Bolyai Mathematical Society and Springer Verlag

About this chapter

Cite this chapter

Krivelevich, M., Sudakov, B. (2006). Pseudo-random Graphs. In: Győri, E., Katona, G.O.H., Lovász, L., Fleiner, T. (eds) More Sets, Graphs and Numbers. Bolyai Society Mathematical Studies, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32439-3_10

Download citation

Publish with us

Policies and ethics