Skip to main content

Operator-Based Distance for Genetic Programming: Subtree Crossover Distance

  • Conference paper
Book cover Genetic Programming (EuroGP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3447))

Included in the following conference series:

Abstract

This paper explores distance measures based on genetic operators for genetic programming using tree structures. The consistency between genetic operators and distance measures is a crucial point for analytical measures of problem difficulty, such as fitness distance correlation, and for measures of population diversity, such as entropy or variance. The contribution of this paper is the exploration of possible definitions and approximations of operator-based edit distance measures. In particular, we focus on the subtree crossover operator. An empirical study is presented to illustrate the features of an operator-based distance. This paper makes progress toward improved algorithmic analysis by using appropriate measures of distance and similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  2. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Eshelman, L. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  3. Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A study of fitness distance correlation as a difficulty measure in genetic programming. Evolutionary Computation (in press)

    Google Scholar 

  4. Vanneschi, L., Tomassini, M., Collard, P., Clergue, M.: Fitness distance correlation in structural mutation genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 459–468. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Vanneschi, L.: Theory and Practice for Efficient Genetic Programming. Ph.D. thesis, University of Lausanne, Switzerland (2004)

    Google Scholar 

  6. Gustafson, S., Ekárt, A., Burke, E.K., Kendall, G.: Problem difficulty and code growth in genetic programming. Genetic Programming and Evolvable Hardware 5(3), 271–290 (2004)

    Article  Google Scholar 

  7. Gustafson, S.: An Analysis of Diversity in Genetic Programming. PhD thesis, School of Computer Science and Information Technology, University of Nottingham, Nottingham, England (February 2004)

    Google Scholar 

  8. Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: An analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary Computation 8(1), 47–62 (2004)

    Article  Google Scholar 

  9. McPhee, N.F., Hopper, N.J.: Analysis of genetic diversity through population history. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, FL, USA, pp. 1112–1120. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  10. Wineberg, M., Oppacher, F.: Distance between populations. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1481–1492. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Poli, R., McPhee, N.F.: General schema theory for genetic programming with subtree-swapping crossover: Part i. Evolutionary Computation 11(1), 53–66 (2003)

    Article  Google Scholar 

  12. Daida, J.M., Li, H., Tang, R., Hilss, A.M.: What makes a problem GP-hard? validating a hypothesis of structural causes. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1665–1677. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gustafson, S., Vanneschi, L. (2005). Operator-Based Distance for Genetic Programming: Subtree Crossover Distance. In: Keijzer, M., Tettamanzi, A., Collet, P., van Hemert, J., Tomassini, M. (eds) Genetic Programming. EuroGP 2005. Lecture Notes in Computer Science, vol 3447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31989-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31989-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25436-2

  • Online ISBN: 978-3-540-31989-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics