Skip to main content

The Nitrogen Cycle in Boreal Peatlands

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 188))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adema EH, Heeres R, Hulskotte J (1986) On the dry deposition of NH3, SO2 and NO2 on wet surfaces in a small scale wind tunnel. Proceedings of the 7th world clean air congress, Sydney, Australia

    Google Scholar 

  • Aerts R, Chapin FSI (2000) The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    CAS  Google Scholar 

  • Aerts R, Wallén B, Malmer N (1992) Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J Ecol 80:131–140

    Article  Google Scholar 

  • Aerts R, Wallén B, Malmer N, De Caluwe H (2001) Nutritional constraints on Sphagnum-growth and potential decay in northern peatlands. J Ecol 89:292–299

    Article  CAS  Google Scholar 

  • Akkermans A DL (1971) Nitrogen fixation and nodulation of Alnus and Hippophae under natural conditions. PhD thesis, University of Leiden, The Netherlands

    Google Scholar 

  • Aldous AR (2002a) Nitrogen retention by Sphagnum mosses: responses to atmospheric nitrogen deposition and drought. Can J Bot 80:721–731

    Article  CAS  Google Scholar 

  • Aldous AR (2002b) Nitrogen translocation in Sphagnum mosses: effects of atmospheric nitrogen deposition. New Phytol 156:241–253

    Article  CAS  Google Scholar 

  • Anderson DE (2002) Carbon accumulation and C/N ratios of peat bogs in northwest Scotland. Scot Geogr J 118:323–341

    Google Scholar 

  • Asman WAH, Sutton MA, Schjorring JK (1998). Ammonia: emission, atmospheric transport and deposition. New Phytol 139:27–48

    Article  CAS  Google Scholar 

  • Backéus I (1985) Aboveground production and growth dynamics of vascular bog plants. Thesis, Uppsala University, Uppsala

    Google Scholar 

  • Bartsch I, Moore TR (1985) A preliminary investigation of primary production and decomposition in four peatlands near Schefferville, Quebec. Can J Bot 63:1241–1248

    Article  Google Scholar 

  • Basilier K, Granhall V, Stenstrøm TA (1978) Nitrogen fixation in wet minerotrophic moss communities of a subarctic mire. Oikos 31:236–246

    CAS  Google Scholar 

  • Baxter R, Emes MJ, Lee DS (1992) Effects of an experimentally applied increase in ammonium on growth and amino-acid metabolism of Sphagnum cuspidatum Ehrh. ex. Hoffm. from differently polluted areas. New Phytol 120:265–274

    Article  CAS  Google Scholar 

  • Belyea LR, Warner BG (1996) Temporal scale and the accumulation of peat in a Sphagnum bog. Can J Bot 74:366–377

    Google Scholar 

  • Berendse F (1994) Litter decomposability — a neglected component of plant fitness. J Ecol 82:187–190

    Article  Google Scholar 

  • Berendse F (1998) Effects of dominant plant species on soils during succession in nutrient-poor ecosystems. Biogeochemistry 42:73–88

    Article  Google Scholar 

  • Berendse F, Aerts R (1987) Nitrogen-use-efficiency: a biologically meaningful definition? Funct Ecol 1:293–296

    Google Scholar 

  • Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans MMPD, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallén B (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biol 7:591–598

    Article  Google Scholar 

  • Bobbink R, Heil GW, Raessen MBAG (1992) Atmospheric deposition and canopy exchange processes in heathland ecosystems. Environ Pollut 75:29–37

    Article  PubMed  CAS  Google Scholar 

  • Bonin P, Omnes P, Chalamet A (1998) Simultaneous occurrence of denitrification and nitrate ammonification in sediments of the French Mediterranean coast. Hydrobiologia 389:169–182

    Article  CAS  Google Scholar 

  • Botch MS, Masing VV (1983) Mire ecosystems in the USSR. In: Gore AJP (ed) Ecosystems of the world 4A. Mires: swamp, bog, fen and moor. Elsevier, Amsterdam, pp 95–152

    Google Scholar 

  • Botch M, Kobak K, Kolchugina T, Vinson T (1995) Carbon pools and accumulation in peatlands of the former Soviet Union. Global Biogeochem Cycles 9:37–46

    Article  CAS  Google Scholar 

  • Bragazza L, Limpens J (2004). Dissolved organic nitrogen dominates in European bogs under increasing atmospheric N deposition. Global Biogeochem Cycles 18:GB4018. DOI 10.1029/2004GB002267

    Article  CAS  Google Scholar 

  • Bragazza L, Gerdol R, Rydin H (2003) Effects of mineral and nutrient input on mire biogeochemistry in two geographical regions. J Ecol 91:417–426

    Article  CAS  Google Scholar 

  • Bragazza L, Limpens J, Gerdol R, Grosvernier P, Hájek M, Hajkova P, Iacumin P, Kutnar L, Rydin H, Tahvanainen T (2004a). Nitrogen concentration and δ15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe. Global Change Biol 11:106–114

    Article  Google Scholar 

  • Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hàjek M, Grosvernier P, Hansen I, Iacumin P, Gerdol R (2004b). Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen depositions in Europe. New Phytol 163:609–116

    Article  Google Scholar 

  • Bridgham SD, Pastor J, Janssens JA, Chapin C, Malterer TJ (1996) Multiple limiting gradients in peatlands: A call for a new paradigm. Wetlands 16:45–65

    Google Scholar 

  • Bridgham SD, Updegraff K, Pastor J (1998) Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecology 79:1545–1561

    Article  Google Scholar 

  • Bridgham SD, Pastor J, Updegraff K, Malterer TJ, Johnson K, Harth C, Chen JQ (1999) Ecosystem control over temperature and energy flux in northern peatlands. Ecol Appl 9:1345–1358

    Google Scholar 

  • Brown DH (1982) Mineral nutrition. In: Smith AJE (ed) Bryophyte ecology. Chapman and Hall, London, pp 383–444

    Google Scholar 

  • Chapin CT, Bridgham SD, Pastor J, Updegraff K (2001) Nitrogen, phosphorus and carbon mineralization in response to nutrient and lime additions in peatlands. Soil Sci 168:409

    Article  Google Scholar 

  • Chapman RR, Hemond HF (1982) Dinitrogen fixation by surface peat and Sphagnum in an ombrotrophic bog. Can J Bot 60:5–543

    Google Scholar 

  • Clymo RS (1983) Peat. In: Gore AJP (ed) Ecosystems of the world 4A. Mires: swamp, bog, fen and moor. Elsevier, Amsterdam, pp 159–224

    Google Scholar 

  • Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos 81:368–388

    Google Scholar 

  • Coulson JC, Butterfield J (1978). An investigation of the biotic factors determining the rates of plant decomposition on blanket bog. J Ecol 66:631–650

    Article  Google Scholar 

  • Crisp DT (1966) Input and output of minerals for an area of Pennine moorland: the importance of precipitation, drainage, peat erosion and animals. J Appl Ecol 3:327–348

    Article  Google Scholar 

  • Damman AWH (1978) Distribution and movement of elements in ombotrophic peat bogs. Oikos 30:480–495

    CAS  Google Scholar 

  • Damman AWH (1988). Regulation of nitrogen removal and retention in Sphagnum bogs and other peatlands. Oikos 51:291–305

    Google Scholar 

  • Damman AWH (1995) Boreal peatlands in Norway and eastern North America: a comparison. Gunneria 43–65

    Google Scholar 

  • Davey A, Marchant HJ (1983) Seasonal variation in nitrogen fixation by Nostoc commune at the Vestfold Hills Antarctica. Phycologia 22:377–386

    Google Scholar 

  • Dickinson CH (1983) Micro-organisms in peatlands. In: Gore AJP (ed) Ecosystems of the world 4A. Mires: swamp, bog, fen and moor. Elsevier, Amsterdam, pp 225–244

    Google Scholar 

  • Dooley F, Houghton JA (1973) The nitrogen-fixing capacities and occurrence of blue-green algae in peat soils. Bryol Phycol J 8:289–293

    Google Scholar 

  • Doyle GJ (1973) Primary production estimates of native blanket bog and meadow vegetation growing on reclaimed peat at Glenamoy, Ireland. In: Bliss LC, Wielgolaski FE (eds) Primary production and production processes. Tundra Biome Steering Committee Report, Edmonton, Alberta, Canada, pp 141–151

    Google Scholar 

  • Fenn ME, Haeuber R, Tonnesen GS, Baron JS, Grossman-Clarke S, Hope D, Jaffe DA, Copeland S, Geiser L, Rueth HM, Sickman JO (2003) Nitrogen emissions, deposition, and monitoring in the western United States. BioScience 53:391–403

    Article  Google Scholar 

  • Flechard CR, Fowler D, Sutton MA, Cape JN (1999) A dynamic chemical model of bidirectional ammonia exchange between semi-natural vegetation and the atmosphere. Q J R Meteorol Soc 125:2611–2641

    Article  Google Scholar 

  • Forrest GI (1971) Structure and production of northern Pennine blanket bog vegetation. J Ecol 59:453–479

    Article  Google Scholar 

  • Forrest GI, Smith RAH (1975) The productivity of a range of blanket bog types in the northern Pennines. J Ecol 63:173–202

    Article  Google Scholar 

  • Freeman C, Lock MA, Reynolds B (1993) Fluxes of CO2, CH4 and N2O from a Welsh peatland following simulation of WT drawdown: potential feedback to climate change. Biogeochemistry 19:51–60

    Article  Google Scholar 

  • Gerdol R (1990) Seasonal variations in the element concentrations in mire water and in Sphagnum mosses on an ombrotrophic bog in the southern Alps. Lindbergia 16:44–50

    Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Google Scholar 

  • Gorham E, Janssens JA, Glaser PH (2003) Rates of peat accumulation during the postglacial period in 32 sites from Alaska to Newfoundland with special emphasis on northern Minnesota. Can J Bot 81:429–438

    Article  Google Scholar 

  • Granhall U (1970) Acetylene reduction by blue-green algae isolated from Swedish soils. Oikos 21:330–332

    CAS  Google Scholar 

  • Granhall U, Lid-Torsvik V (1975) Nitrogen fixation by bacteria and free-living bluegreen algae in tundra sites. In: Wielgolaski FE (ed) Ecological studies 17. Fennoscandian tundra ecosystems, part II. Animals and systems analysis. Springer, Berlin Heidelberg New York, pp 305–315

    Google Scholar 

  • Granhall U, Selander H (1973) Nitrogen fixation in a subarctic mire. Oikos 24:8–15

    Google Scholar 

  • Grigal DF (1985) Sphagnum production in forested bogs of northern Minnesota. Can J Bot 63:1204–1207

    Google Scholar 

  • Grigal DF, Homann PS (1994) Nitrogen mineralisation, groundwater dynamics, and forest growth on a Minnesota outwash landscape. Biogeochemistry 27:171–185

    Article  Google Scholar 

  • Grigal DF, Buttleman CG, Kernik LK (1985) Biomass and productivity of the woody strata of forested bogs in northern Minnesota. Can J Bot 63:2416–2424

    Article  Google Scholar 

  • Gunnarsson U, Rydin H (2000) Nitrogen fertilization reduces Sphagnum production in bog communities. New Phytol 147:527–537

    Article  CAS  Google Scholar 

  • Gunnarsson U, Malmer N, Rydin H (2002) Dynamics or constancy in Sphagnum dominated mire ecosystems? A 40-year study. Ecography 25:685–704

    Article  Google Scholar 

  • Gunther AJ (1989) Nitrogen fixation by lichens in a subarctic Alaskan watershed (USA). Bryologist 92:202–208

    Article  Google Scholar 

  • Hayward PM, Clymo RS (1982) Profiles of water content and pore size in Sphagnum peat, and their relation to peat bog ecology. Proc R Soc Lond Ser B 215:299–325

    Google Scholar 

  • Heal OW, Latter PM, Howson G (1978). A study of the rates of decomposition of organic matter. In: Heal OW, Perkins DE (eds) Production ecology of British moors and montane grasslands. Springer, Berlin Heidelberg New York, pp 136–159

    Google Scholar 

  • Heijmans MMPD, Berendse F, Arp WJ, Masselink AK, Klees H, De Visser W, van Breemen N (2001a) Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands. J Ecol 89:268–279

    Article  CAS  Google Scholar 

  • Heijmans MMPD, Arp WJ, Berendse F (2001b) Effects of elevated CO2 and vascular plants on evapotranspiration in bog vegetation. Global Change Biol 7:817–827

    Article  Google Scholar 

  • Heijmans MMPD, Klees H, De Visser W, Berendse F (2002) Effects of increased nitrogen deposition on the distribution of 15N-labeled nitrogen between Sphagnum and vascular plants. Ecosystems 5:500–508

    CAS  Google Scholar 

  • Heil GW, Werger MJA, Mol de W, Van Dam D, Heijne B (1988) Capture of atmospheric ammonium by grassland canopies. Science 239:764–765

    Article  PubMed  CAS  Google Scholar 

  • Hemond HF (1980) Biogeochemistry of Thoreau’s Bog, Concord, Massachusetts. Ecol Monogr 50:507–526

    Article  CAS  Google Scholar 

  • Hemond HF (1983) The nitrogen budget of Thoreau’s Bog. Ecology 64:99–109

    Article  Google Scholar 

  • Hendon D, Charman DJ (2004) High-resolution peatland water-table changes for the past 200 years: the influence of climate and implications for management. Holocene 14:125–134

    Article  Google Scholar 

  • Henry GHR, Svoboda J (1986) Dinitrogen fixation (acetylene reduction) in high arctic sedge meadow communities. Arct Alp Res 18:181–187

    Article  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Hoosbeek MR, van Breemen N, Vasander H, Buttler A, Berendse F (2002) Potassium limits potential growth of bog vegetation under elevated atmospheric CO2 and N deposition. Global Change Biol 8:1130–1138

    Article  Google Scholar 

  • Hosker RP, Lindberg SE (1982) Atmospheric deposition and plant assimilation of gases and particles. Atmos Environ 16:889–899

    Article  CAS  Google Scholar 

  • Jauhiainen J, Vasander H, Silvola J (1994) Response of Sphagnum fuscum to N deposition and increased CO2. J Bryol 18:83–95

    Google Scholar 

  • Jauhiainen J, Silvola J, Vasander H (1998a) The effects of increased nitrogen deposition and CO2 on Sphagnum angustifolium and S. warnstorfii. Ann Bot Fenn 35:247–256

    Google Scholar 

  • Jauhiainen J, Wallén B, Malmer N (1998b) Potential NH4 + and NO3 uptake in seven Sphagnum species. New Phytol 138:287–293

    Article  CAS  Google Scholar 

  • Kalbitz K, Geyer S (2002) Different effects of peat degradation on dissolved organic carbon and nitrogen. Org Geochem 33:319–326

    Article  CAS  Google Scholar 

  • Kielland K (1997) Role of free amino acids in the nitrogen economy of arctic cryptogams. écoscience 4:75–79

    Google Scholar 

  • Kielland K (1994) Amino-acid absorption by arctic plants — implications for plant nutrition and nitrogen cycling. Ecology 75:2373–2383

    Article  Google Scholar 

  • King JY, Reeburgh WS (2002) A pulse-labeling experiment to determine the contribution of recent plant photosynthates to net methane emission in arctic wet sedge tundra. Soil Biol Biochem 34:173–180

    Article  CAS  Google Scholar 

  • Kivinen E (1933) Suokasvien ja niiden kasvualustan kasvinravintoainesuhteista. Acta Agral Fenn 27:1–140

    Google Scholar 

  • Kløve B (2001) Characteristics of nitrogen and phosphorus loads in peat mining wastewater. Water Res 10:2362

    Google Scholar 

  • Koerselman W, Verhoeven JTA (1992) Nutrient dynamics in mires of various trophic status: nutrient inputs and outputs and the internal nutrient cycle. In: Verhoeven JTA (ed) Fens and bogs in the Netherlands: vegetation, history, nutrient dynamics and conservation. Kluwer, Dordrecht, pp 397–432

    Google Scholar 

  • Koerselman W, Van Kerkhoven MB, Verhoeven JTA (1993) Release of inorganic nitrogen, phosphorus and potassium in peat soils: effect of temperature, water chemistry and water level. Biogeochemistry 20:63–81

    Article  CAS  Google Scholar 

  • Kortelainen P, Saukkonen S (1994) Leaching of organic carbon and nitrogen from forested catchments. Academy of Finland. The Finnish research programme on climate change, second progress report 285–290

    Google Scholar 

  • Kuhry P, Vitt DH (1996) Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77:271–275

    Article  Google Scholar 

  • Lamers LPM, Bobbink R, Roelofs JGM (2000) Natural nitrogen filter fails in raised bogs. Global Change Biol 6:583–586

    Article  Google Scholar 

  • Lee EJ, Kenkel N, Booth T (1996) Atmospheric deposition of macronutreints by pollen in the boreal forest. écoscience 3:304–309

    Google Scholar 

  • Li Y, Vitt DH (1997) Patterns of retention and utilisation on aerially deposited nitrogen in boreal peatlands. écoscience 4:106–116

    Google Scholar 

  • Ligrone R, Duckett JG (1998) The leafy stems of Sphagnum (Bryophyta) contain highly differentiated polarized cells with axial arrays of endoplasmic microtubules. New Phytol 140:567–579

    Article  Google Scholar 

  • Limpens J, Berendse F (2003a) Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: the role of amino acid nitrogen concentration. Oecologia 135:339–345

    PubMed  CAS  Google Scholar 

  • Limpens J, Berendse F (2003b) How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos 103:537–547

    Article  CAS  Google Scholar 

  • Limpens J, Berendse F, Klees H (2003a) N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytol 157:339–347

    Article  Google Scholar 

  • Limpens J, Raymakers JTAG, Baar J, Berendse F, Zijlstra JD (2003b) The interactions between epiphytic algae, a parasitic fungus and Sphagnum as affected by N and P. Oikos 103:59–68

    Article  Google Scholar 

  • Limpens J, Berendse F, Klees H (2004) How P affects the impact of N deposition on Sphagnum and vascular plants in bogs. Ecosystems 7:793–804

    Article  CAS  Google Scholar 

  • Lipson DA, Näsholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128:305–316

    Article  Google Scholar 

  • Lovett GM (1992) Atmospheric deposition and canopy interactions of nitrogen. In: Johnson DW, Lindberg SE (eds) Atmospheric deposition and forest nutrient cycling. Springer, Berlin Heidelberg New York, pp 152–166

    Google Scholar 

  • Lütt S (1992) Produktionsbiologische Untersuchungen zur Sukzession der Torfstichvegetation in Schleswig-Holstein. Mitteilungen der Arbeitsgemeinschaft Geobotanik in Schleswig-Holstein und Hamburg. PhD thesis, University of Kiel, Germany

    Google Scholar 

  • Malmer N (1988) Patterns in the growth and the accumulation of inorganic constituents in the Sphagnum cover on ombrotrophic bogs in Scandinavia. Oikos 53:105–120

    CAS  Google Scholar 

  • Malmer N (1990) Constant or increasing nitrogen concentrations in Sphagnum mosses on mires in Southern Sweden during the last few decades. Aquilo Ser Bot 28:57–65

    Google Scholar 

  • Malmer N, Nihlgård B (1980) Supply and transport of mineral nutrients in a subarctic mire. Ecol Bull 30:63–95

    CAS  Google Scholar 

  • Malmer N, Sjörs H (1955) Some determinations of elementary constituents in mire plants and peats. Bot Not 108:46–80

    CAS  Google Scholar 

  • Malmer N, Wallén B (1993) Accumulation and release of organic matter in ombotrophic hummocks — processes and regional variation. Ecography 16:193–211

    Article  Google Scholar 

  • Malmer N, Wallén B (2004) Input rates, decay losses and accumulation rates of carbon in bogs during the last millennium: internal processes and environmental changes. Holocene 14:111–117

    Article  Google Scholar 

  • Malmer N, Svensson BM, Wallén B (1994) Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobot Phytotaxon 29:483–496

    Google Scholar 

  • Malmer N, Albinsson C, Svensson BH, Wallén B (2003) Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation. Oikos 100:469–482

    Article  Google Scholar 

  • Martikainen PJ, Nykänen H, Crill PM, Silvola J (1993) Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 366:51–53

    Article  CAS  Google Scholar 

  • Martin NJ, Holding AJ (1978) Nutrient availability and other factors limiting microbial activity in the blanket peat. In: Heal OW, Perkins DE (eds) Production ecology of British moors and montane grasslands. Springer, Berlin Heidelberg New York, pp 113–135

    Google Scholar 

  • Matzner E (1989). Acidic precipitation: case study soiling. In: Adriano DC, Havas M (eds) Acidic precipitation, vol I: case studies. Springer, Berlin Heidelberg New York, pp 39–83

    Google Scholar 

  • Mauquoy D, Van Geel B, Blaauw M, Speranza A, van der Plicht J (2004). Changes in solar activity and Holocene climatic shifts derived from C-14 wiggle-match dated peat deposits. Holocene 14:45–52

    Article  Google Scholar 

  • McFarland JW, Ruess RW, Kielland K, Doyle AP (2002) Cycling dynamics of NH4+ and amino acid nitrogen in soils of a deciduous boreal forest ecosystem. Ecosystems 5:775–788

    CAS  Google Scholar 

  • Michelsen A, Jonasson S, Sleep D, Havström M, Callaghan TV (1996) Shoot biomass, d13C, nitrogen and chlorophyll responses of two arctic dwarf shrubs to in situ shading, nutrient application and warming simulating climate change. Oecologia 105:1–12

    Article  Google Scholar 

  • Millbank JW (1985) Lichens and plant nutrition. Proc R Soc Edinburgh Sect B 85:253–261

    Google Scholar 

  • Mitchell CE, Gilbert D, Buttler A, Amblard C, Grosvernier P, Gobat JM (2003) Structure of microbial communities in Sphagnum peatlands and effect of atmospheric carbon dioxide enrichment. Microb Ecol 46:187–199

    Article  PubMed  CAS  Google Scholar 

  • NADP/NTN National Atmospheric Deposition Program (2004). National Atmospheric Deposition Program 2003 Annual Summary. NADP Data report 2004-01. Illinois State Water Survey, Champaign, IL, USA

    Google Scholar 

  • Näsholm T, Edvast A, Ericsson A, Norden L (1994)Accumulation of amino acids in some boreal forest plants in response to increased nitrogen availability. New Phytol 126:137–143

    Article  Google Scholar 

  • Neff JC, Holland EA, Dentener FJ, McDowell WH, Russell KM (2002) The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle? Biogeochemistry 57/58:99–136

    Article  CAS  Google Scholar 

  • Nordbakken JF, Ohlson M, Högberg P (2003) Boreal bog plants: nitrogen sources and uptake of recently deposited nitrogen. Environ Pollut 126:191–200

    Article  PubMed  CAS  Google Scholar 

  • Nordin A, Gunnarsson U (2000) Amino acid accumulation and growth of Sphagnum under different levels of N deposition. écoscience 7:474–480

    Google Scholar 

  • O’Neill KP (2000) Role of bryophyte-dominated ecosystems in the global carbon budget. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 344–368

    Google Scholar 

  • Overbeck F, Happach H (1957) über das Wachstum und den Wasserhaushalt einiger Hochmoorsphagnen. Flora Jena 144:335–402

    Google Scholar 

  • Pakarinen P, Tolonen K (1977) Nutrient contents of Sphagnum mosses in relation to bog water chemistry in northern Finland. Lindbergia 4:27–33

    Google Scholar 

  • Pearson JD, Wells KJ, Seller A, Bennett A, Soares J, Woodall J, Ingrouille MJ (2000) Traffic exposure increases natural 15N and heavy metal concentrations in mosses. New Phytol 147:317–326

    Article  CAS  Google Scholar 

  • Penner JE, Atherton CS, Dignon J, Ghan SJ, Walton JJ, Hameed S (1991) Tropospheric nitrogen: a three dimensional study of sources, distributions and deposition. J Geophys Res 96:959–990

    Google Scholar 

  • Pitcairn CER, Fowler D, Grace J (1995) Deposition of fixed atmospheric nitrogen and foliar nitrogen content of bryophytes and Calluna vulgaris (L.) Hull. Environ Pollut 88:193–205

    Article  CAS  Google Scholar 

  • Press MC, Woodin S, Lee JA (1986) The potential importance of an increased atmospheric nitrogen supply to the growth of ombrotrophic Sphagnum species. New Phytol 103:45–55

    Article  CAS  Google Scholar 

  • Proctor MCF (1994) Seasonal and shorter-term changes in surface-water chemistry on four English ombrogenous bogs. J Ecol 82:597–610

    Article  CAS  Google Scholar 

  • Proctor MCF, Maltby E (1998) Relationships between acid atmospheric deposition and the surface pH of some ombrotrophic bogs in Britain. J Ecol 86:329–340

    Article  CAS  Google Scholar 

  • Reader RJ, Stewart JM (1972) The relationship between net primary production and accumulation for a peatland in southeastern Manitoba. Ecology 53:1024–1037

    Article  Google Scholar 

  • Regina K, Silvola J, Martikainen PJ (1999) Short-term effects of changing water table on N2O fluxes from peat monoliths from natural and drained boreal peatlands. Global Change Biol 5:183–189

    Article  Google Scholar 

  • Richardson CJ (1983) Pocosins: vanishing wastelands or valuable wetlands? Bio-Science 33:626–633

    Google Scholar 

  • Ro CvU, Vet RJ (2002) Analyzed data fields from the national Atmospheric Chemistry Database (NAtChem) and Analysis facility. Air Quality Research Branch, Meteorological Service of Canada, Environment Canada. Toronto, ON

    Google Scholar 

  • Rochefort L, Vitt DH, Bayley SE (1990). Growth, production, and decomposition dynamics of Sphagnum under natural and experimentally acidified conditions. Ecology 71:1986–2000

    Article  Google Scholar 

  • Rosswall T, Granhall U (1980) Nitrogen cycling in a subarctic ombrotrophic mire. Ecol Bull 30:209–234

    CAS  Google Scholar 

  • Rosswall T, Veum AK, Kärenlampi L (1975) Plant litter decomposition at Fennoscandian tundra sites. In: Wielgolaski FE (ed) Ecological studies 17. Fennoscandian tundra ecosystems 17, part I. Plants and microorganisms. Springer, Berlin Heidelberg New York, pp 268–278

    Google Scholar 

  • Rudolph H, Voigt JU (1986) Effects of NH4 +-N and NO3 -N on growth and metabolism of Sphagnum magellanicum. Physiol Plant 66:339–343

    Article  Google Scholar 

  • Rydin H, Clymo RS (1989) Transport of carbon and phosphorus compounds about Sphagnum. Proc R Soc Lond Ser B 237:63–84

    Article  CAS  Google Scholar 

  • Sallantaus T, Kaipainen H (1995) Water-carried element balances of peatlands. In: Laiho R, Laine J, Vasander H (eds) Northern peatlands in global climatic change. Publications of the Academy of Finland 1/96, Helsinki, pp 197–203

    Google Scholar 

  • Schlesinger WH (1991) Biogeochemistry: an analysis of global change. Academic, San Diego

    Google Scholar 

  • Sheridan RP (1991) Nitrogenase activity by Hapalosiphon flexuosus associated with Sphagnum erythrocalyx mats in the cloud forest on the volcano La Soufriere, Guadeloupe, French West Indies. Biotropica 23:134–140

    Article  Google Scholar 

  • Sikora LJ, Keeney DR, Gore AJP (1983) Further aspects of soil chemistry under anaerobic conditions. In: Gore AJP (ed) Ecosystems of the world 4A. Mires: swamp, bog, fen and moor. Elsevier, Amsterdam, pp 247–256

    Google Scholar 

  • Smith RAH, Forrest GI (1978) Field Estimates of Primary Production. In: Heal OW, Perkins DE (eds) Production ecology of British moors and montane grasslands. Springer, Berlin Heidelberg New York, pp 17–37

    Google Scholar 

  • Smolders AJP, Tomassen HBM, Lamers LPM, Lomans BP, Roelofs JGM (2002) Peat bog restoration by floating raft formation: the effects of groundwater and peat quality. J Appl Ecol 39:391–401

    Article  CAS  Google Scholar 

  • Sonesson M (1973) Some chemical characteristics of the Stordalen mire. In: Sonesson M (ed) Progress Report 1972. IBP Swedish Tundra Biome Project technical report, pp 31–43

    Google Scholar 

  • Steward JM (1974) Blue-green algae. In: Quispel A (ed) The biology of nitrogen fixation. North Holland, Amsterdam, pp 202–237

    Google Scholar 

  • Stutz RC, Bliss LC (1975) Nitrogen fixation in soils of Truelove Island, Northwest Territories. Can J Bot 53:1387–1399

    Article  CAS  Google Scholar 

  • Sutton MA, Moncrieff JB, Fowler D (1992) Deposition of atmospheric ammonia to moorlands. Environ Pollut 75:15–24

    Article  PubMed  CAS  Google Scholar 

  • Sutton MA, Pitcairn CER, Fowler D (1993) The exchange of ammonia between atmosphere and plant communities. Adv Ecol Res 24:301–396

    Article  CAS  Google Scholar 

  • Svensson BH, Rosswall T (1980) Energy flow through the subarctic mire at Stordalen. Ecol Bull 30:283–301

    Google Scholar 

  • Tarrason L, Jonson JE, Fagerli H, Benedictow A, Wind P, Simpson D, Klein H (2003) Transboundary acidification, eutrofication and ground level ozone in Europe. Part III. Source-receptor relationships. EMEP Status Report 2003. Norwegian Meteorological Institute EMEP/MSC-W

    Google Scholar 

  • Timmons DR, Verry ES, Burwell RE, Holt RF (1977) Nutrient transport in surface runoff and interflow from an aspen-birch forest. J Environ Qual 6:192

    Google Scholar 

  • Tomassen HBM, Smolders AJP, Lamers LPM, Roelofs JGM (2003) Stimulated growth of Betula pubescens and Molinia caerulea on ombrotrophic bogs: role of high levels of atmospheric nitrogen deposition. J Ecol 91:357–370

    Article  Google Scholar 

  • Turunen J, Tahvanainen T, Tolonen K, Pitkanen A (2001) Carbon accumulation in West Siberian mires, Russia. Global Biogeochem Cycles 15:285–296

    Article  CAS  Google Scholar 

  • Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland — application to boreal and subarctic regions. Holocene 12:69–80

    Article  Google Scholar 

  • Twenhöven FL (1992) Competition between two Sphagnum species under different deposition levels. J Bryol 17:71–80

    Google Scholar 

  • Updegraff K, Pastor J, Bridgham SD, Johnston CA (1995) Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecol Appl 5:151–163

    Google Scholar 

  • Urban NR (1983) The nitrogen cycle in a forested bog watershed in northern Minnesota. PhD thesis University of Minnesota, Minneapolis

    Google Scholar 

  • Urban NR, Eisenreich SJ (1988) Nitrogen cycling in a forested Minnesota bog. Can J Bot 66:435–449

    Google Scholar 

  • Urban NR, Eisenreich SJ, Bayley SE (1988) The relative importance of denitrification and nitrate assimilation in midcontinental bogs. Limnol Oceanogr 33:1611–1617

    Article  CAS  Google Scholar 

  • van Breemen N (1995) How Sphagnum bogs down other plants. Trends Ecol Evol 10:270–275

    Article  Google Scholar 

  • van Breemen N, Burrough PA, Velthorst EJ, Van Dobben HF, De Wit T, Ridder TB, Reynders HFR (1982) Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall. Nature 22:548–550

    Article  Google Scholar 

  • van der Heijden E, Verbeek SK, Kuiper PJC (2000) Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst. Global Change Biol 6:201–212

    Article  Google Scholar 

  • van Oene H, Berendse F, De Kovel CGF (1999) Model analysis of the effects of historic CO2 levels and nitrogen inputs on vegetation succession. Ecol Appl 9:920–935

    Google Scholar 

  • van Vuuren M, Berendse F (1993) Changes in soil organic matter and net nitrogen mineralization in heathland soils, after removal, addition or replacement of litter from Erica tetralix or Molinia caerulea. Biol Fertil Soils 15:268–274

    Article  Google Scholar 

  • van Wijk MT, Williams M, Gough L, Hobbie SE, Shaver GR (2003) Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation? J Ecol 91:644–676

    Article  Google Scholar 

  • Vardy SR, Warner BG, Turunen J, Aravena R (2000) Carbon accumulation in permafrost peatlands in the Northwest Territories and Nunavut, Canada. Holocene 10:273–280

    Article  Google Scholar 

  • Vasander H (1981) Keidäsrameen kasvibiomassaja tuotos. Suo 32:94

    Google Scholar 

  • Verhoeven JTA, Koerselman W, Beltman B (1988) The vegetation of fens in relation to their hydrology and nutrient dynamics; a case study. In: Symoens JJ (ed) Vegetation of inland waters. Handbook of vegetation science 15. Kluwer, Dordrecht, pp 249–282

    Google Scholar 

  • Verhoeven JTA, Keuter A, Van Logtestijn R, Van Kerkhoven MB, Wassen M (1996) Control of local nutrient dynamics in mires by regional and climatic factors: a comparison of Dutch and Polish sites. J Ecol 84:647–656

    Article  Google Scholar 

  • Verry ES (1975) Streamflow chemistry and nutrient yields from upland-peatland watersheds in Minnesota. Ecology 56:1157

    Article  Google Scholar 

  • Verry ES, Timmons DR (1982) Waterborne nutrientflow through an upland-peatland watershed in Minnesota. Ecology 63:1456–1467

    Article  CAS  Google Scholar 

  • Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572

    Article  Google Scholar 

  • Vitt DH, Wieder RK, Halsey LA, Turetsky MR (2003) Response of Sphagnum fuscum to nitrogen deposition: a case study of ombrogenous peatlands in Alberta, Canada. Bryologist 106:235–245

    Article  Google Scholar 

  • Vuorenmaa J (2004) Long-term changes of acidifying deposition in Finland (1973–2000). Environ Pollut 128:351–362

    Article  PubMed  CAS  Google Scholar 

  • Wallén B (1986) Above and below ground dry mass of the three main vascular plants on hummocks on a subarctic peat bog. Oikos 46:51–56

    Google Scholar 

  • Wallén B (1987) Growth pattern and distribution of biomass of Calluna vulgaris on an ombrotrophic peat bog. Holarct Ecol 10:73–79

    Google Scholar 

  • Wallén B (1992) Methods for studying below-ground production in mire ecosystems. Suo 43:155–162

    Google Scholar 

  • Waughman GJ (1980) Chemical aspects of the ecology of some south German oeatlands. J Ecol 68:1025–1046

    Article  CAS  Google Scholar 

  • Waughman GJ, Bellamy DJ (1980) Nitrogen fixation and the nitrogen balance in peatland ecosystems. Ecology 61:1185–1198

    Article  CAS  Google Scholar 

  • Wein RW, Bliss LC (1974) Primary productivity of alpine meadow communities. Arct Alp Res 6:261–274

    Article  Google Scholar 

  • Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT (2000) Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81:3464–3478

    Article  Google Scholar 

  • Weltzin JF, Bridgham SD, Pastor J, Chen JQ, Harth C (2003) Potential effects of warming and drying on peatland plant community composition. Global Change Biol 9:141–151

    Article  Google Scholar 

  • Wielgolaski FE, Kjelvik S, Kallio P (1975) Mineral content of tundra and forest tundra plants in Fennoscandia. In: Wielgolaski FE (ed) Ecological studies 17. Fennoscandian tundra ecosystems, part II. Animals and systems analysis. Springer, Berlin Heidelberg New York, pp 316–332

    Google Scholar 

  • Williams BL, Silcock DJ (1997) Nutrient and microbial changes in the peat profile beneath Sphagnum magellanicum in response to additions of ammonium nitrate. J Appl Ecol 34: 961–970

    Article  CAS  Google Scholar 

  • Williams BL, Silcock DJ (2000) Impact of NH4NO3 on microbial biomass C and N and extractable DOM in raised bog peat beneath Sphagnum capillifolium and S. recurvum. Biogeochemistry 49:259–276

    Article  CAS  Google Scholar 

  • Williams BL, Wheatley RE (1989) Nitrogen transformations in poorly-drained reseeded blanket peat under different management systems. Int Peat J 3:97–106

    Google Scholar 

  • Williams BL, Silcock DJ, Young M (1999a) Seasonal dynamics of N in two Sphagnum moss species and underlying peat treated with 15NH4 15NO3. Biogeochemistry 45:285–302

    Google Scholar 

  • Williams BL, Buttler A, Grosvernier P, Francez AJ, Gilbert D, Ilomets M, Jauhiainen J, Matthey Y, Silcock DJ, Vasander H (1999b) The fate of NH4NO3 added to Sphagnum magellanicum carpets at five European mire sites. Biogeochemistry 45:73–93

    Google Scholar 

  • Woodin S, Lee JA (1987) The fate of some components of acidic deposition in ombrotrophic mires. Environ Pollut 45:61–72

    Article  PubMed  CAS  Google Scholar 

  • Yelina GA (1974) Biological productivity of Karelian peatlands. Proceedings of the international symposium on forest drainage, Oulu, Jyväskylä, Finland, pp 71–79

    Google Scholar 

  • Zoltai SC, Siltanen RM, Johnson JD (2000) A wetland database for the western boreal, subarctic and arctic regions of Canada. Natural Resources Canada. Northern Forestry Centre, information report. Report no NOR-X-368, Edmonton, Alberta, Canada

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Limpens, J., Heijmans, M.M.P.D., Berendse, F. (2006). The Nitrogen Cycle in Boreal Peatlands. In: Wieder, R.K., Vitt, D.H. (eds) Boreal Peatland Ecosystems. Ecological Studies, vol 188. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-31913-9_10

Download citation

Publish with us

Policies and ethics