Perceptive and Cognitive Evaluation of a Piano Synthesis Model

  • Julien Bensa
  • Danièle Dubois
  • Richard Kronland-Martinet
  • Sølvi Ystad
Conference paper

DOI: 10.1007/978-3-540-31807-1_18

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3310)
Cite this paper as:
Bensa J., Dubois D., Kronland-Martinet R., Ystad S. (2005) Perceptive and Cognitive Evaluation of a Piano Synthesis Model. In: Wiil U.K. (eds) Computer Music Modeling and Retrieval. CMMR 2004. Lecture Notes in Computer Science, vol 3310. Springer, Berlin, Heidelberg

Abstract

The aim of this work is to use subjective evaluations of sounds produced by a piano synthesis model to determine the perceptual influence on phenomena involved in sound production. The specificity of musical sounds is that they are intended for perception and judgments by human beings. It is therefore necessary, in order to evaluate the acoustic qualities of a musical instrument or a sound model, to introduce a research approach which takes into account the evaluation of the sound quality by human beings. As a first approach we synthesize a number of piano sounds. We then evaluate the quality of the perceived acoustic signal by questioning a group of persons. We hereby try to link the model’s parameters to semantic descriptors obtained from these persons and to more classical perceptual signal descriptors. This approach should give a better understanding of how the model’s parameters are linked to cognitive representations and more generally give new clues to cognitive descriptions of timbre of musical sounds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Julien Bensa
    • 1
  • Danièle Dubois
    • 1
  • Richard Kronland-Martinet
    • 2
  • Sølvi Ystad
    • 2
  1. 1.Laboratoire d’Acoustique MusicaleUniversité Pierre et Marie CurieParisFrance
  2. 2.Laboratoire de Mécanique et d’Acoustique équipeMarseilleFrance

Personalised recommendations