Skip to main content

Advances in Breast Imaging: A Dilemma or Progress?

  • Chapter
  • First Online:

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 173))

Abstract

Breast cancer is the leading malignant disease in women in the Western world. It affects 9–12% of women during their lifetime (Heywang-Köbrunner and Schreer 2003). In the United States breast cancer causes more than 43,000 deaths per year, in the countries of the European Union more than 74,000 (Eurostat Datenbank Newcronos, unpublished data). Early detection and effective treatment of breast cancer are the major factors contributing to the decline in the mortality rate. At present, mammography is the gold standard for the detection of breast cancer. Despite recent technical advances, mammography may miss as many as 10–25% of carcinomas, particularly in radiographically dense breasts. Furthermore, the high rate of false-positive mammograms (60–70%) results in a correspondingly high rate of biopsies that impose a heavy psychological burden on women and a heavy financial cost on the healthcare system (Heywang-Köbrunner and Schreer 2003; Elmore et al. 1998). Various additional modalities such as ultrasound (US) or magnetic resonance imaging (MRI) have been introduced to adjunctively either increase cancer detection or to improve discrimination between malignant and benign lesions. Despite complementary use of these imaging modalities, breast cancer is missed in a considerable number of cases (Heywang-Köbrunner and Schreer 2003; Elmore et al. 1998). Over time, substantial insight into the pathophysiology of breast carcinomas and other breast diseases has been gained. This knowledge should be included in breast imaging strategies of the future. Researchers expect to gain more, and particularly more precise and specific, information about breast lesions in the future, leading to earlier diagnosis of breast cancer and a more precise discrimination between benign and malignant tumors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • American College of Radiology (2003) Illustrated breast imaging reporting and data system (BI-RADS): ultrasound, 1st edn. American College of Radiology, Reston, VA

    Google Scholar 

  • Bremer C, Ntziachristos V, Weitkamp B, Theilmeier G, Heindel W, Weissleder R (2005) Optical imaging of spontaneous breast tumors using protease sensing ‘smart’ optical probes. Invest Radiol 40:321–327

    Article  CAS  PubMed  Google Scholar 

  • Buchberger W, Niehoff A, Obrist P, DeKoekkoek-Doll P, Dunser M (2000) Clinically and mammographically occult breast lesions: detection and classification with high-resolution sonography. Semin Ultrasound CT MR 21(4):325–336

    Article  CAS  PubMed  Google Scholar 

  • Daldrup-Link HE, Brasch RC(2003)Macromolecular contrast agents for MR mammography: current status. Eur Radiol 13:354–365

    PubMed  Google Scholar 

  • Daldrup-Link HE, Rydland J, Helbich TH et al (2003) Quantification of breast tumor microvascular permeability with feruglose-enhanced MR imaging: initial phase II multicenter trial. Radiology 229:885–892

    Article  PubMed  Google Scholar 

  • Elmore JG, Barton MB, Moceri VM, Polk S, Arena PJ, Fletcher SW (1998) Ten-year risk of false positive screening mammograms and clinical breast examinations. N Engl J Med 338:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Floery D, Helbich TH, Riedl CC et al (2005) Characterization of benign and malignant breast lesions with computed tomography laser mammography (CTLM): initial experience. Invest Radiol 328–335

    Google Scholar 

  • Fricke H, Morse S (1926) The electric capacity of tumors in the breast. J Cancer Res 16:340–376

    Google Scholar 

  • Fuchsjäger MH, Helbich TH, Ringl H et al (2002) Electrical impedance scanning in the differentiation of suspicious breast lesions: comparison with mammography, ultrasound and histopathology. Fortschr Röntgenstr 174:1522–1529

    Article  Google Scholar 

  • Fuchsjäger M, Diebold T, Szabo B, Malich A, Vogl T, Helbich T (2003) Electrical impedance scanning European multicenter evaluation: final definition of adjunctive value to mammography and sonography for differentiation of malignant and benign breast lesions. Radiology 229:513

    Article  Google Scholar 

  • Fuchsjäger MH, Flory D, Reiner CS, Rudas M, Riedl CC, Helbich TH (2005) The negative predictive value of electrical impedance scanning in BI-RADS category IV breast lesions. Invest Radiol 40:478–485

    Article  Google Scholar 

  • Funovics MA, Kapeller B, Hoeller C et al (2004) MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 22:843–850

    Article  CAS  PubMed  Google Scholar 

  • Helbich TH (2000) Contrast-enhanced magnetic resonance imaging of the breast. Eur J Radiol 34:208–219

    Article  CAS  PubMed  Google Scholar 

  • Heywang-Köbrunner SH, Schreer I (2003) Bildgebende Mammadiagnostik, 2nd ed. Thieme, New York

    Google Scholar 

  • Hogemann-Savellano D, Bos E, Blondet C et al (2003) The transferrin receptor: a potential molecular imaging marker for human cancer. Neoplasia 5:495–506

    PubMed  Google Scholar 

  • Jossinet J (1996) Variability of impeditivity in normal and pathological breast tissue. Med Biol Eng Comput 34:346–350

    Article  CAS  PubMed  Google Scholar 

  • Jossinet J (1998) The impeditivity of freshly excised human breast tissue. Physiol Meas 19:61–75

    Article  CAS  PubMed  Google Scholar 

  • Ke S, Wen X, Gurfinkel M et al (2003) Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res 63:7870–7875

    CAS  PubMed  Google Scholar 

  • Kolb TM, Lichy J, Newhouse JH (2002) Comparison of the performance of screening mammography, physical examination and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 225:165–175

    Article  PubMed  Google Scholar 

  • Kuhl CK, Jost P, Morakkabati N, Zivanovic O, Schild HH, Gieseke J (2006) Contrast-enhanced MR imaging of the breast at 3.0 and 1.5 T in the same patients: initial experience. Radiology 239: 666–676

    Article  PubMed  Google Scholar 

  • Kumar R, Alavi A (2004) Fluorodeoxyglucose-PET in the management of breast cancer. Radiol Clin N Am 42:1113–1122, ix

    Article  PubMed  Google Scholar 

  • Leconte I, Feger C, Galant C, Berliere M, Vande Berg B, D’Hoore W, Maldague B (2003) Mammography and subsequent whole-breast sonography of nonpalpable breast cancers: the importance of radiologic breast density. AJR Am J Roentgenol 180:1675–1679

    PubMed  Google Scholar 

  • Linden HM, Stekhova SA, Link JM et al (2006) Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J Clin Oncol 24:2793–2799

    Article  CAS  PubMed  Google Scholar 

  • Madjar H, Ohlinger R, Mundinger A, Watermann D, Frenz JP, Bader W, Schulz-Wendtland R, Degenhardt F (2006) BI-RADS-analogue DEGUM criteria for findings in breast ultrasound – consensus of the DEGUM committee on breast ultrasound Ultraschall Med 27:374–379

    Article  CAS  PubMed  Google Scholar 

  • Malich A, Böhm T, Facius M et al (2001) Additional value of electrical impedance scanning: experience of 240 histologically-proven breast lesions. Eur J Cancer 37:2324–2330

    Article  CAS  PubMed  Google Scholar 

  • Moon WK, Chang RF, Chen CJ, Chen DR, Chen WL (2005) Solid breast masses: classification with computer-aided analysis of continuous US images obtained with probe compression. Radiology 236:458–464

    Article  PubMed  Google Scholar 

  • Ntziachristos V, Yodh AG, Schnall M, Chance B (2000) Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci U S A 97:2767–2772

    Article  CAS  PubMed  Google Scholar 

  • Perlet C, Kessler M, Lenington S, Sittek H, Reiser M (2000) Electrical impedance measurement of the breast: effect of hormonal changes associated with the menstrual cycle. Eur Radiol 10:1550–1554

    Article  CAS  PubMed  Google Scholar 

  • Piperno G, Frei E, Moshitzky M (1990) Breast cancer screening by impedance measurements. Front Med Biol Eng 2:111–117

    CAS  PubMed  Google Scholar 

  • Rizzatto G (2001) Towards a more sophisticated use of breast ultrasound. Eur Radiol 11:2425–2435

    Article  CAS  PubMed  Google Scholar 

  • Robinson MK, Doss M, Shaller C et al (2005) Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res 65:1471–1478

    Article  CAS  PubMed  Google Scholar 

  • Rotten D, Levaillant J-M, Zerat L (1999) Analysis of normal breast tissue and of solid breast masses using three-dimensional ultrasound mammography. Ultrasound Obstet Gynecol 14:114–124

    Article  CAS  PubMed  Google Scholar 

  • Smyczek-Gargya B, Fersis N, Dittmann H et al (2004) PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study. Eur J Nucl Med Mol Imaging 31:720–724

    Article  PubMed  Google Scholar 

  • Stojadinovic A, Nissan A, Gallimidi Z, Lenington S, Logan W, Zuley M, Yeshaya A, Shimonov M, Melloul M, Fields S, Allweis T, Ginor R, Gur D, Shriver CD (2005) Electrical impedance scanning for the early detection of breast cancer in young women: preliminary results of a multicenter prospective clinical trial. J Clin Oncol 23:2703–2715

    Article  PubMed  Google Scholar 

  • Surowiec AJ, Stuchly SS, Barr JR et al (1988) Dielectric properties of breast carcinoma and the surrounding tissues. IEEE Trans Biomed Eng 35:257–263

    Article  CAS  PubMed  Google Scholar 

  • Tung CH (2000) In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res 60 Sept 1, 4953–58

    Google Scholar 

  • Weismann CF (2000) Breast ultrasound: new frontiers in imaging? Ultrasound Obstet Gynecol 15:279–281

    Article  CAS  PubMed  Google Scholar 

  • Weismann CF (2005) Recent advances in multidimensional 3D/4D breast imaging. In: Ueno E, Shiina T, Kubota M, Sawai K (eds) Research and development in breast ultrasound. Springer, Tokyo, pp 146–150

    Chapter  Google Scholar 

  • Woodhams R (2005) ADC mappring of benign and malignant breast tumors. Magn Reson Med Sci 4(1):35–42

    Article  PubMed  Google Scholar 

  • Yagle KJ, Eary JF, Tait JF et al (2005) Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med 46:658–666

    CAS  PubMed  Google Scholar 

  • Zou Y, Guo Z (2003) A review of electrical impedance techniques for breast cancer detection. Med Eng Physiol 25:79–90

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Helbich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flöry, D., Fuchsjaeger, M.W., Weisman, C.F., Helbich, T.H. (2009). Advances in Breast Imaging: A Dilemma or Progress?. In: Brun del Re, R. (eds) Minimally Invasive Breast Biopsies. Recent Results in Cancer Research, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31611-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31611-4_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31403-5

  • Online ISBN: 978-3-540-31611-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics