Skip to main content

Adhesion and Adhesives of Fungi and Oomycetes

  • Chapter
Biological Adhesives

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apoga D, Jansson H-B (2000) Visualization and characterization of the extracellular matrix of Bipolaris sorokiniana. Mycol Res 104:564–575.

    Google Scholar 

  • Apoga D, Jansson H-B, Tunlid A (2001) Adhesion of conidia and germlings of the plant pathogenic fungus Bipolaris sorokiniana to solid surfaces. Mycol Res 105:1251–1260.

    CAS  Google Scholar 

  • Apoga D, Barnard J, Craighead HG, Hoch HC (2004) Quantification of substratum contact required for initiation of Colletotrichum graminicola appressoria. Fung Genet Biol 41:1–12.

    Google Scholar 

  • Barki M, Koltin Y, Yanko M, Tamarkin A, Rosenberg M (1993) Isolation of a Candida albicans DNA sequence conferring adhesion and aggregation on Saccharomyces cerevisiae. J Bacteriol 175:5683–5689.

    PubMed  CAS  Google Scholar 

  • Bechinger C, Giebel K-F, Schnell M, Leiderer P, Deising HB, Bastmeyer M (1999) Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. Science 285:1896–1899.

    PubMed  CAS  Google Scholar 

  • Bergstrom GC, Nicholson RL (1999) The biology of corn anthracnose: knowledge to exploit for improved management. Plant Dis 83:596–608.

    CAS  Google Scholar 

  • Bircher U, Hohl HR (1997) Surface glycoproteins associated with appressorium formation and adhesion in Phytophthora palmivora. Mycol Res 101:769–775.

    CAS  Google Scholar 

  • Brandhorst T, Klein B (2000) Cell wall biogenesis of Blastomyces dermatitidis: evidence for a novel mechanism of cell surface localization of a virulence-associated adhesin via extracellular release and reassociation with cell wall chitin. J Biol Chem 275:7925–7934.

    PubMed  CAS  Google Scholar 

  • Brandhorst T, Wüthrich M, Warner T, Klein B (1999) Targeted gene disruption reveals an adhesin indispensable for pathogenicity of Blastomyces dermatitidis. J Exp Med 189:1207–1216.

    Google Scholar 

  • Braun EJ, Howard RJ (1994a) Adhesion of Cochliobolus heterostrophus conidia and germlings to leaves and artificial surfaces. Exp Mycol 18:211–220.

    Google Scholar 

  • Braun EJ, Howard RJ (1994b) Adhesion of fungal spores and germlings to host surfaces. Protoplasma 181:202–212.

    Google Scholar 

  • Braus GH, Grundmann O, Brueckner S, Moesch H-U (2003) Amino acid starvation and Gcn4p regulate adhesive growth and FLO11 gene expression in Saccharomyces cerevisiae. Mol Biol Cell 14:4272–4284.

    PubMed  CAS  Google Scholar 

  • Brunner F, Rosahl S, Lee J, Rudd JJ, Geiler C, Kauppinen S, Rasmussen G, Scheel D, Nuernberger T (2002) Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J 21:6681–6688.

    PubMed  CAS  Google Scholar 

  • Buck JW, Andrews JH (1999a) Attachment of the yeast Rhodosporidium toruloides is mediated by adhesives localized at sites of bud cell development. Appl Environ Microbiol 65:465–471.

    PubMed  CAS  Google Scholar 

  • Buck JW, Andrews JH (1999b) Localized, positive charge mediates adhesion of Rhodosporidium toruloides to barley leaves and polystyrene. Appl Environ Microbiol 65:2179–2183.

    PubMed  CAS  Google Scholar 

  • Caesar-TonThat TC, Epstein L (1991) Adhesion-reduced mutants and the wild type Nectria haematococca: an ultrastructural comparison of the macroconidial walls. Exp Mycol 15: 193–205.

    Google Scholar 

  • Carver TLW, Kunoh H, Thomas BJ, Nicholson RL (1999) Release and visualization of the extracellular matrix of conidia of Blumeria graminis. Mycol Res 103:547–560.

    Google Scholar 

  • Chaky J, Anderson K, Moss M, Vaillancourt L (2001) Surface hydrophobicity and surface rigidity induce spore germination in Colletotrichum graminicola. Phytopathology 91: 558–564.

    PubMed  CAS  Google Scholar 

  • Chaubal R, Wilmot VA, Wynn WK (1991) Visualization, adhesiveness, and cytochemistry of the extracellular matrix produced by urediniospore germ tubes of Puccinia sorghi. Can J Bot 69:2044–2054.

    CAS  Google Scholar 

  • Cormack BP, Ghori N, Falkow S (1999) An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285:578–582.

    PubMed  CAS  Google Scholar 

  • Corrêa A Jr, Staples RC, Hoch HC (1996) Inhibition of thigmostimulated cell differentiation with RGD-peptides in Uromyces germlings. Protoplasma 194:91–102.

    Google Scholar 

  • De Groot PWJ, de Boer AD, Cunningham J, Dekker HL, de Jong L, Hellingwerf KJ, de Koster C, Klis FM (2004) Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryotic Cell 3:955–965.

    PubMed  Google Scholar 

  • De Groot PW, Ram AF, Klis FM (2005) Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42:657–675.

    PubMed  Google Scholar 

  • Deising H, Nicholson RL, Haug M, Howard RJ, Mengden K (1992) Adhesion pad formation and the involvement of cutinase and esterases in the attachment of uredospores to the host cuticle. Plant Cell 4:1101–1111.

    PubMed  CAS  Google Scholar 

  • De Nobel H, Sietsma JH, van den Ende H, Klis FM (2001) Molecular organization and construction of the fungal cell wall. In: Howard RJ, Gow NAR (eds) The Mycota, vol VIII. Biology of the fungal cell. Springer, Berlin Heidelberg New York, pp 181–200.

    Google Scholar 

  • Deng MQ, Templeton TJ, London NR, Bauer C, Schroeder AA, Abrahamsen MS (2002) Cryptosporidium parvum genes containing thrombospondin type 1 domains. Infect Immun 70:6987–6995.

    PubMed  CAS  Google Scholar 

  • De Vocht ML, Scholtmeijer K, van der Vegte EW, deVries OMH, Sonveaux N, Wösten HAB, Ruysschaert J-M, Hadziioannou G, Wessels JGH, Robillard GT (1998) Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/ hydrophilic interfaces. Biophys J 74:2059–2068.

    PubMed  Google Scholar 

  • Doss RP, Potter SW, Chastagner GA, Christian JK (1993) Adhesion of non-germinated Botrytis cineria conidia to several substrata. Appl Environ Biol 59:1786–1791.

    CAS  Google Scholar 

  • Doss RP, Potter SW, Soeldner AH, Christian JK, Fukunaga LE (1995) Adhesion of germlings of Botrytis cinerea. Appl Environ Microbiol 61:260–265.

    PubMed  CAS  Google Scholar 

  • Ebata Y, Yamamoto H, Uchiyama T (1998) Chemical composition of the glue from appressoria of Magnaporthe grisea. Biosci Biotech Biochem 62:672–674.

    CAS  Google Scholar 

  • Epstein L, Nicholson RL (1997) Adhesion of spores and hyphae to plant surfaces In: Carroll G, Tudzynski P (eds) The Mycota, vol V. Plant relationships, part A. Springer, Berlin Heidelberg New York, pp 11–25.

    Google Scholar 

  • Epstein L, Laccetti L, Staples RC, Hoch HC, Hoose WA (1985) Extracellular proteins associated with induction of differentiation in bean rust uredospore germlings. Phytopathology 75:1073–1076.

    CAS  Google Scholar 

  • Epstein L, Laccetti LB, Staples RC, Hoch HC (1987) Cell-substratum adhesive protein involved in surface contact responses of the bean rust fungus. Physiol Mol Plant Pathol 30:373–388.

    CAS  Google Scholar 

  • Epstein L, Kwon YH, Almond DE, Schached LM, Jones MJ (1994) Genetic and biochemical characterization of Nectria haematococca strains with adhesive and adhesion-reduced macroconidia. Appl Environ Microbiol 60:524–530.

    PubMed  CAS  Google Scholar 

  • Epstein L, Lusnak K, Kaur S (1998) Transformation-mediated developmental mutants of Glomerella graminicola. Fung Genet Biol 23:189–203.

    CAS  Google Scholar 

  • Fabritius A-L, Judelson HS (2003) A mating-induced protein of Phytophthora infestans is a member of a family of elicitors with divergent structures and stage-specific patterns of expression. Mol Plant Microbe Interact 16:926–935.

    PubMed  CAS  Google Scholar 

  • Fu Y, Rieg G, Fonzi WA, Belanger PH, Edwards JE Jr, Filler SG (1998) Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect Immun 66:1783–1786.

    PubMed  CAS  Google Scholar 

  • Fukazawa Y, Kagaya K (1997) Molecular bases of adhesion of Candida albicans. J Med Vet Mycol 35:87–99.

    PubMed  CAS  Google Scholar 

  • Gale CA, Bendel CM, McClellan M, Hauser M, Becker JM, Berman J, Hostetter MK (1998) Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279:1355–1358.

    PubMed  CAS  Google Scholar 

  • Gaulin E, Jauneau A, Villalba F, Rickauer M, Esquerre-Tugaye MT, Bottin A (2002) The CBEL glycoprotein of Phytophthora parasitica var. nicotianae is involved in cell wall deposition and adhesion to cellulosic substrates. J Cell Sci 115:4565–4575.

    PubMed  CAS  Google Scholar 

  • Göernhardt B, Rouhara I, Schmelzer E (2000) Cyst germination proteins of the potato pathogen Phytophthora infestans share homology with human mucins. Mol Plant Microbe Interact 13:32–42.

    Google Scholar 

  • Gubler F, Hardham AR, Duniec J (1989) Characterising adhesiveness of Phytophthora cinnamomi zoospores during encystment. Protoplasma 149:24–30.

    Google Scholar 

  • Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci USA 84:5823–5827.

    PubMed  CAS  Google Scholar 

  • Hamer JE, Howard RJ, Chumley FG, Valent B (1988) A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239:288–290.

    PubMed  CAS  Google Scholar 

  • Hardham AR (2001) Cell biology of fungal infection of plants. In: Howard RJ, Gow NAR (eds) The Mycota: biology of the fungal cell, vol 7. Springer, Berlin Heidelberg New York, pp 91–123.

    Google Scholar 

  • Hardham A, Gubler F (1990) Polarity of attachment of zoospores of a root pathogen and pre-alignment of the emerging germ tube. Cell Biol Int Rep 14:947–956.

    Google Scholar 

  • Hoch HC, Staples RC, Whitehead B, Comeau J, Wolf ED (1987) Signaling for growth orientation and cell differentiation by surface topography in Uromyces. Science 235:1659–1662.

    PubMed  Google Scholar 

  • Hostetter MK (2000) RGD-mediated adhesion in fungal pathogens of humans, plants and insects. Curr Opin Microbiol 3:344–348.

    PubMed  CAS  Google Scholar 

  • Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88:11281–11284.

    PubMed  CAS  Google Scholar 

  • Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180.

    PubMed  CAS  Google Scholar 

  • Hughes HB, Carzaniga R, Rawlings SL, Green JR, O’Connell RJ (1999) Spore surface glycoproteins of Colletotrichum lindemuthianum are recognized by a monoclonal antibody which inhibits adhesion to polystyrene. Microbiology 145:1927–1936.

    PubMed  CAS  Google Scholar 

  • Iranzo M, Aguado C, Pallotti C, Canizares JV, Mormeneo S (2002) Transglutaminase activity is involved in Saccharomyces cerevisiae wall construction. Microbiology 148:1329–1334.

    PubMed  CAS  Google Scholar 

  • Jones EBG (1994) Fungal adhesion. Mycol Res 98:961–981.

    Google Scholar 

  • Jones MJ, Epstein L (1989) Adhesion of Nectria haematococca macroconidia. Physiol Mol Plant Pathol 35:453–461.

    CAS  Google Scholar 

  • Jones MJ, Epstein L (1990) Adhesion of macroconidia to the plant surface and virulence of Nectria haematococca. Appl Environ Microbiol 56:3772–3778.

    PubMed  Google Scholar 

  • Kanbe T, Cutler JE (1998) Minimum chemical requirements for adhesin activity of the acid-stable part of Candida albicans cell wall phosphomannoprotein complex. Infect Immun 66:5812–5818.

    PubMed  CAS  Google Scholar 

  • Kershaw MJ, Talbot NJ (1998) Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fung Genet Biol 23:18–33.

    CAS  Google Scholar 

  • Kershaw MJ, Wakley GE, Talbot NJ (1998) Complementation of the Mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. EMBO J 17:3838–3849.

    PubMed  CAS  Google Scholar 

  • Kunoh H, Yamaoka N, Yoshioka H, Nicholson RL (1988) Preparation of the infection court by Erysiphe graminis: I. Contact mediated changes in morphology of the conidium surface. Exp Mycol 12:325–335.

    Google Scholar 

  • Kuo K-C, Hoch HC (1996) Germination of Phyllosticta ampelicida pycnidiospores: prerequisite of adhesion to the substratum and the relationship of substratum wettability. Fung Genet Biol 20:18–29.

    Google Scholar 

  • Kwon YH, Epstein L (1993) A 90-kDa glycoprotein associated with adhesion of Nectria haematococca macroconidia to substrata. Mol Plant Microbe Interact 6:481–487.

    CAS  Google Scholar 

  • Kwon YH, Epstein L (1997a) Involvement of the 90 kDa glycoprotein in adhesion of Nectria haematococca macroconidia. Physiol Mol Plant Pathol 51:287–303.

    CAS  Google Scholar 

  • Kwon YH, Epstein L (1997b) Isolation and composition of the 90 kDa glycoprotein associated with adhesion of Nectria haematococca macroconidia. Physiol Mol Plant Pathol 51:63–74.

    CAS  Google Scholar 

  • Lau GW, Hamer JE (1998) Acropetal: a genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus. Fungal Genet Biol 24:228–239.

    PubMed  CAS  Google Scholar 

  • Leite B, Nicholson RL (1992) Mycosporine-alanine: a self-inhibitor of germination from the conidial mucilage of Colletotrichum graminicola. Exp Mycol 16:76–86.

    CAS  Google Scholar 

  • Li F, Palecek S (2003) EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryotic Cell 2:1266–1273.

    PubMed  CAS  Google Scholar 

  • Liu ZM, Kolattukudy PE (1999) Early expression of the calmodulin gene, which precedes appressorium formation in Magnaporthe grisea, is inhibited by self-inhibitors and requires surface attachment. J Bacteriol 181:3571–3577.

    PubMed  CAS  Google Scholar 

  • Loza L, Fu Y, Ibrahim AS, Sheppard DC (2004) Functional analysis of the Candida albicans ALSI gene product. Yeast 21:473–482.

    PubMed  CAS  Google Scholar 

  • Masuoka J, Wu G, Glee PM, Hazen KC (1999) Inhibition of Candida albicans attachment to extracellular matrix by antibodies which recognize hydrophobic cell wall proteins. FEMS Immunol Med Microbiol 24:421–429.

    PubMed  CAS  Google Scholar 

  • Mendgen K, Hahn M, Deising H (1996) Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu Rev Phytopathol 34:367–386.

    PubMed  CAS  Google Scholar 

  • Mercure EW, Leite B, Nicholson RL (1994) Adhesion of ungerminated conidia of Colletotricum graminicola to artificial hydrophobic surfaces. Physiol Mol Plant Pathol 45:421–440.

    Google Scholar 

  • Mercure EW, Kunoh H, Nicholson RL (1995) Visualization of materials released from adhered, ungerminated conidia of Colletotrichum graminicola. Physiol Mol Plant Pathol 46:121–135.

    CAS  Google Scholar 

  • Newman SL, Chaturvedi S, Klein BS (1995) The WI-1 antigen on Blastomyces dermatitidis yeasts mediates binding to human macrophage CD18 and CD14 receptors. J Immunol 154:753–761.

    PubMed  CAS  Google Scholar 

  • Nicholson RL, Epstein L (1991) Adhesion of fungi to the plant surface: prerequisite for pathogenesis. In: Cole GT, Hoch HC (eds) The Fungal spore and disease initiation in plants and animals. Plenum Press, New York, pp 3–23.

    Google Scholar 

  • Nicholson RL, Moraes WBC (1980) Survival of Colletotrichum graminicola: importance of the spore matrix. Phytopathology 70:255–261.

    CAS  Google Scholar 

  • Nicholson RL, Yoshioka H, Yamaoka N, Kunoh H (1988) Preparation of the infection court by Erysiphe graminis. II. Release of esterase enzyme from conidia in response to a contact stimulus. Exp Mycol 12:336–349.

    CAS  Google Scholar 

  • Ohtake M, Yamamoto H, Uchiyama T (1999) Influences of metabolic inhibitors and hydrolytic enzymes on the adhesion of appressoria of Pyricularia oryzae to wax-coated cover-glasses. Biosci Biotech Biochem 63:978–982.

    CAS  Google Scholar 

  • Osherov N, May GS (2001) The molecular mechanisms of conidial germination. FEMS Microbiol Lett 199:153–160.

    PubMed  CAS  Google Scholar 

  • Pain NA, Green JR, Jones GL, O’Connell RJ (1996) Composition and organisation of extracellular matrices around germ tubes and appressoria of Colletotrichum lindemuthianum. Protoplasma 190:119–130.

    CAS  Google Scholar 

  • Pascholati S, Yoshioka H, Kunoh H, Nicholson RL (1992) Preparation of the infection court by Erysiphe graminis f. sp. hordei: cutinase is a component of the conidial exudate. Physiol Mol Plant Pathol 41:53–59.

    Google Scholar 

  • Pascholati SF, Deising H, Leite B, Anderson D, Nicholson RL (1993) Cutinase and non-specific esterase activities in the conidial mucilage of Colletotrichum graminicola. Physiol Mol Plant Pathol 42:37–51.

    CAS  Google Scholar 

  • Pringle RB (1981) Nonspecific adhesion of Bipolaris sorokiniana sporelings. Can J Plant Pathol 3:9–11.

    CAS  Google Scholar 

  • Recorbet G, Alabouvette C (1997) Adhesion of Fusarium oxysporum conidia to tomato roots. Lett Appl Microbiol 25:375–379.

    Google Scholar 

  • Reynolds TB, Fink GR (2001) Bakers’ yeast, a model for fungal biofilm formation. Science 291:878–881.

    PubMed  CAS  Google Scholar 

  • Robold AV, Hardham AR (2004) Production of monoclonal antibodies against peripheral vesicle proteins in zoospores of Phytophthora nicotianae. Protoplasma 223:121–132.

    PubMed  CAS  Google Scholar 

  • Robold AV, Hardham AR (2005) During attachment Phytophthora spores secrete proteins containing thrombospondin type 1 repeats. Curr Genet 47:307–315.

    PubMed  CAS  Google Scholar 

  • Ruiz-Herrera J, Iranzo M, Elorza MV, Sentandreu R, Mormeno S (1995) Involvement of transglutaminase in the formation of covalent cross-links in the cell wall of Candida albicans. Arch Microbiol 164:186–193.

    PubMed  CAS  Google Scholar 

  • Scholtmeijer K, Janssen MI, Gerssen B, de Vocht ML, van Leeuwen BM, van Kooten TG, Wösten HAB, Wessels JGH (2002) Surface modifications created by using engineered hydrophobins. Appl Environ Microbiol 68:1367–1373.

    PubMed  CAS  Google Scholar 

  • Schuren FHJ, Wessels JGH (1990) Two genes specifically expressed in fruiting dikaryons of Schizophyllum commune: homologies with a gene not regulated by mating type genes. Gene 90:199–205.

    PubMed  CAS  Google Scholar 

  • Sela-Buurlage MB, Epstein L, Rodriguez RJ (1991) Adhesion of ungerminated Colletotricum musae conidia. Physiol Mol Plant Pathol 39:345–352.

    CAS  Google Scholar 

  • Senchou V, Weide R, Carrasco A, Bouyssou H, Pont-Lezica R, Govers F, Canut H (2004) High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif. Cell Mol Life Sci 61:502–509.

    PubMed  CAS  Google Scholar 

  • Shaw BD, Hoch HC (1999) The pycnidiospore of Phyllosticta ampelicida: surface properties involved in substratum attachment and germination. Mycol Res 103:915–924.

    Google Scholar 

  • Shaw BD, Hoch HC (2000) Ca2+ regulation of Phyllosticta ampelicida pycnidiospore germination and appressorium formation. Fung Genet Biol 31:43–53.

    CAS  Google Scholar 

  • Shaw BD, Hoch HC (2001) Ions as regulators of growth and development. In: Howard RJ, Gow NAR (eds) The Mycota, vol VIII. Biology of the fungal cell. Springer, Berlin Heidelberg New York, pp 73–89.

    Google Scholar 

  • Slawecki RA, Ryan EP, Young DH (2002) Novel fungitoxicity assays for inhibition of germination-associated adhesion of Botrytis cinerea and Puccinia recondita spores. Appl Environ Microbiol 68:597–601.

    PubMed  CAS  Google Scholar 

  • Snetselaar KM, McCann MP (2001) From bud to appressorium: morphology of the Ustilago maydis transition from saprobic to parasitic growth. Phytopathology 91:S165 (abstract).

    Google Scholar 

  • Spotts RA, Holz G (1996) Adhesion and removal of conidia of Botrytis cinerea and Penicillium expansum from grape and plum fruit surfaces. Plant Dis 80:691–699.

    Google Scholar 

  • Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538.

    PubMed  CAS  Google Scholar 

  • Stanley MS, Callow ME, Perry R, Alberte RS, Smith R, Callow JA (2002) Inhibition of fungal spore adhesion by zosteric acid as the basis for a novel, nontoxic crop protection technology. Phytopathology 92:378–383.

    PubMed  CAS  Google Scholar 

  • Sugui JA, Leite B, Nicholson RL (1998) Partial characterization of the extracellular matrix released onto hydrophobic surfaces by conidia and conidial germlings of Colletotricum graminicola. Physiol Mol Plant Pathol 52:411–425.

    CAS  Google Scholar 

  • Sundstrom P (2002) Adhesion in Candida spp. Cell Microbiol 4:461–469.

    PubMed  CAS  Google Scholar 

  • Takano Y, Kikuchi T, Kubo Y, Hamer JE, Mise K, Furusawa I (2000) The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Mol Plant Microbe Interact 13:374–383.

    PubMed  CAS  Google Scholar 

  • Talbot NJ, Kershaw M, Wakley GE, De Vries OMH, Wessels JGH, Hamer JE (1996) MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of the rice blast fungus Magnaporthe grisea. Plant Cell 8:985–999.

    PubMed  CAS  Google Scholar 

  • Terhune BT, Hoch HC (1993) Substrate hydrophobicity and adhesion of Uromyces urediospores and germlings. Exp Mycol 17:241–252.

    CAS  Google Scholar 

  • Tomley FM, Soldati DS (2001) Mix and match modules: structure and function of microneme proteins in apicomplexan parasites. Trends Parasitol 17:81–88.

    PubMed  CAS  Google Scholar 

  • Tucker RP (2004) Molecules in focus. The thrombospondin type 1 repeat superfamily. Int J Biochem Cell Biol 36:969–974.

    PubMed  CAS  Google Scholar 

  • Tucker SL, Talbot NJ (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol 39:385–417.

    PubMed  CAS  Google Scholar 

  • Vreeland V, Epstein L (1996) Analysis of plant-substratum adhesives. In: Jackson JF, Linskens H-F (eds) Modern methods of plant analysis, vol 17. Plant cell wall analysis. Springer, Berlin Heidelberg New York, pp 95–116.

    Google Scholar 

  • Vreeland V, Waite JH, Epstein L (1998) Polyphenols and oxidases in substratum adhesion by marine algae and mussels. J Phycol 34:1–8.

    CAS  Google Scholar 

  • Watanabe K, Parbery DG, Kobayashi T, Doi Y (2000) Conidial adhesion and germination of Pestalotiopsis neglecta. Mycol Res 104:962–968.

    Google Scholar 

  • Weig M, Jansch L, Gross U, de Koster CG, Klis FM, de Groot, PWJ (2004) Systematic identification in silico of covalently bound cell wall proteins and analysis of protein-polysaccharide linkages of the human pathogen Candida glabrata. Microbiology 150:3129–3144.

    PubMed  CAS  Google Scholar 

  • Wösten HAB, Schuren FHJ, Wessels JGH (1994) Interfacial self-assembly of a hydrophobin into an amphipathic membrane mediates fungal attachment to hydrophobic surfaces. EMBO J 13:5848–5854.

    PubMed  Google Scholar 

  • Wright AJ, Thomas BJ, Kunoh H, Nicholson RL, Carver TLW (2002) Influences of substrata and interface geometry on the release of extracellular material by Blumeria graminis conidia. Physiol Mol Plant Pathol 61:163–178.

    Google Scholar 

  • Xiao J-Z, Ohshima A, Kamakura T, Ishiyama T, Yamaguchi I (1994) Extracellular glycoprotein(s) associated with cellular differentiation in Magnaporthe grisea. Mol Plant Microbe Interact 7:639–644.

    CAS  Google Scholar 

  • Yamaoka N, Takeuchi Y (1999) Morphogenesis of the powdery mildew fungus in water (4) The significance of conidium adhesion to the substratum for normal appressorium development in water. Physiol Mol Plant Pathol 54:145–154.

    Google Scholar 

  • Zhao X, Oh S-H, Cheng G, Green CB, Nuessen JA, Yeater K, Leng RP, Brown AJP, Hoyer LL (2004) ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology 150:2415–2428.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Epstein, L., Nicholson, R.L. (2006). Adhesion and Adhesives of Fungi and Oomycetes. In: Smith, A.M., Callow, J.A. (eds) Biological Adhesives. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31049-5_3

Download citation

Publish with us

Policies and ethics