Skip to main content

Robots with Flexible Elements

  • Reference work entry
Springer Handbook of Robotics

Abstract

Design issues, dynamic modeling, trajectory planning, and feedback control problems are presented for robot manipulators having components with mechanical flexibility, either concentrated at the joints or distributed along the links. The chapter is divided accordingly in two main parts. Similarities or differences between the two types of flexibility are pointed out wherever appropriate.

For robots with flexible joints, the dynamic model is derived in detail by following a Lagrangian approach and possible simplified versions are discussed. The problem of computing the nominal torques that produce a desired robot motion is then solved. Regulation and trajectory tracking tasks are addressed by means of linear and nonlinear feedback control designs.

For robots with flexible links, relevant factors that lead to the consideration of distributed flexibility are analyzed. Dynamic models are presented, based on the treatment of flexibility through lumped elements, transfer matrices, or assumed modes. Several specific issues are then highlighted, including the selection of sensors, the model order used for control design, and the generation of effective commands that reduce or eliminate residual vibrations in rest-to-rest maneuvers. Feedback control alternatives are finally discussed.

In each of the two parts of this chapter, a section is devoted to the illustration of the original references and to further readings on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

LWR:

locally weighted regression

MEMS:

microelectromechanical systems

MIMO:

multi-input multi-output

PD:

proportional-derivative

PID:

proportional–integral–derivative

SCARA:

selective compliance assembly robot arm

References

  1. L.M. Sweet, M.C. Good: Redefinition of the robot motion control problem, IEEE Control Syst. Mag. 5(3), 18–24 (1985)

    Article  Google Scholar 

  2. M.C. Good, L.M. Sweet, K.L. Strobel: Dynamic models for control system design of integrated robot and drive systems, ASME J. Dyn. Syst. Meas. Contr. 107, 53–59 (1985)

    Article  Google Scholar 

  3. E. Rivin: Mechanical Design of Robots (McGraw-Hill, New York 1988)

    Google Scholar 

  4. S. Nicosia, F. Nicolò, D. Lentini: Dynamical control of industrial robots with elastic and dissipative joints, 8th IFAC World Congr. (Kyoto 1981) pp. 1933–1939

    Google Scholar 

  5. P. Tomei: An observer for flexible joint robots, IEEE Trans. Autom. Control 35(6), 739–743 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Höpler, M. Thümmel: Symbolic computation of the inverse dynamics of elastic joint robots, IEEE Int. Conf. Robot. Autom. (New Orleans 2004) pp. 4314–4319

    Google Scholar 

  7. M.W. Spong: Modeling and control of elastic joint robots, ASME J. Dyn. Syst. Meas. Control 109, 310–319 (1987)

    Article  MATH  Google Scholar 

  8. S.H. Murphy, J.T. Wen, G.N. Saridis: Simulation and analysis of flexibly jointed manipulators, 29th IEEE Conf. Decis. Control (Honolulu 1990) pp. 545–550

    Google Scholar 

  9. R. Marino, S. Nicosia: On the Feedback Control of Industrial Robots with Elastic Joints: A Singular Perturbation Approach (Dipartimento di Ingegneria Elettronica, Univ. Rome Tor Vergata, Rome 1984), Rep. R-84.01

    Google Scholar 

  10. G. Cesareo, F. Nicolò, S. Nicosia: DYMIR: A code for generating dynamic model of robots, IEEE Int. Conf. Robot. Autom. (Atlanta 1984) pp. 115–120

    Google Scholar 

  11. A. De Luca: Feedforward/feedback laws for the control of flexible robots, IEEE Int. Conf. Robot. Autom. (San Francisco 2000) pp. 233–240

    Google Scholar 

  12. H.B. Kuntze, A.H.K. Jacubasch: Control algorithms for stiffening an elastic industrial robot, IEEE J. Robot. Autom. 1(2), 71–78 (1985)

    Google Scholar 

  13. S.H. Lin, S. Tosunoglu, D. Tesar: Control of a six-degree-of-freedom flexible industrial manipulator, IEEE Control Syst. Mag. 11(2), 24–30 (1991)

    Article  Google Scholar 

  14. P. Tomei: A simple PD controller for robots with elastic joints, IEEE Trans. Autom. Control 36(10), 1208–1213 (1991)

    Article  MathSciNet  Google Scholar 

  15. A. De Luca, B. Siciliano: Regulation of flexible arms under gravity, IEEE Trans. Robot. Autom. 9(4), 463–467 (1993)

    Article  Google Scholar 

  16. A. De Luca, B. Siciliano, L. Zollo: PD control with on-line gravity compensation for robots with elastic joints: Theory and experiments, Automatica 41(10), 1809–1819 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. C. Ott, A. Albu-Schäffer, A. Kugi, S. Stramigioli, G. Hirzinger: A passivity based Cartesian impedance controller for flexible joint robots – Part I: Torque feedback and gravity compensation, IEEE Int. Conf. Robot. Autom. (New Orleans 2004) pp. 2659–2665

    Google Scholar 

  18. L. Zollo, B. Siciliano, A. De Luca, E. Guglielmelli, P. Dario: Compliance control for an anthropomorphic robot with elastic joints: Theory and experiments, ASME J. Dyn. Syst. Meas. Control 127(3), 321–328 (2005)

    Article  Google Scholar 

  19. A. Albu-Schäffer, C. Ott, G. Hirzinger: A passivity based Cartesian impedance controller for flexible joint robots – Part II: Full state feedback, impedance design and experiments, IEEE Int. Conf. Robot. Autom. (New Orleans 2004) pp. 2666–2672

    Google Scholar 

  20. R. Kelly, V. Santibanez: Global regulation of elastic joint robots based on energy shaping, IEEE Trans. Autom. Control 43(10), 1451–1456 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Alvarez-Ramirez, I. Cervantes: PID regulation of robot manipulators with elastic joints, Asian J. Control 5(1), 32–38 (2003)

    Article  Google Scholar 

  22. A. De Luca, S. Panzieri: Learning gravity compensation in robots: Rigid arms, elastic joints, flexible links, Int. J. Adapt. Contr. Signal Process. 7(5), 417–433 (1993)

    Article  MATH  Google Scholar 

  23. A. Albu-Schäffer, G. Hirzinger: A globally stable state feedback controller for flexible joint robots, Adv. Robot. 15(8), 799–814 (2001)

    Article  Google Scholar 

  24. L.E. Pfeffer, O. Khatib, J. Hake: Joint torque sensory feedback in the control of a PUMA manipulator, IEEE Trans. Robot. Autom. 5(4), 418–425 (1989)

    Article  Google Scholar 

  25. M. Hashimoto, Y. Kiyosawa, R.P. Paul: A torque sensing technique for robots with harmonic drives, IEEE Trans. Robot. Autom. 9(1), 108–116 (1993)

    Article  Google Scholar 

  26. T. Lin, A.A. Goldenberg: Robust adaptive control of flexible joint robots with joint torque feedback, IEEE Int. Conf. Robot. Autom. (Nagoya 1995) pp. 1229–1234

    Google Scholar 

  27. M.G. Forrest-Barlach, S.M. Babcock: Inverse dynamics position control of a compliant manipulator, IEEE J. Robot. Autom. 3(1), 75–83 (1987)

    Article  Google Scholar 

  28. K.P. Jankowski, H. Van Brussel: An approach to discrete inverse dynamics control of flexible-joint robots, IEEE Trans. Robot. Autom. 8(5), 651–658 (1992)

    Article  Google Scholar 

  29. W.M. Grimm: Robustness analysis of nonlinear decoupling for elastic-joint robots, IEEE Trans. Robot. Autom. 6(3), 373–377 (1990)

    Article  Google Scholar 

  30. A. De Luca, R. Farina, P. Lucibello: On the control of robots with visco-elastic joints, IEEE Int. Conf. Robot. Autom. (Barcelona 2005) pp. 4297–4302

    Google Scholar 

  31. A. De Luca: Decoupling and feedback linearization of robots with mixed rigid/elastic joints, Int. J. Robust Nonlin. Contr. 8(11), 965–977 (1998)

    Article  MATH  Google Scholar 

  32. A. De Luca, B. Siciliano: Inversion-based nonlinear control of robot arms with flexible links, AIAA J. Guid. Control Dyn. 16(6), 1169–1176 (1993)

    Article  MATH  Google Scholar 

  33. A. De Luca: Dynamic control of robots with joint elasticity, IEEE Int. Conf. Robot. Autom. (Philadelphia 1988) pp. 152–158

    Google Scholar 

  34. S. Nicosia, P. Tomei: On the feedback linearization of robots with elastic joints, 27th IEEE Conf. Decis. Control (Austin 1988) pp. 180–185

    Google Scholar 

  35. A. De Luca, P. Lucibello: A general algorithm for dynamic feedback linearization of robots with elastic joints, IEEE Int. Conf. Robot. Autom. (Leuven 1998) pp. 504–510

    Google Scholar 

  36. K. Khorasani, P.V. Kokotovic: Feedback linearization of a flexible manipulator near its rigid body manifold, Syst. Control Lett. 6, 187–192 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  37. M.W. Spong, K. Khorasani, P.V. Kokotovic: An integral manifold approach to the feedback control of flexible joint robots, IEEE J. Robot. Autom. 3(4), 291–300 (1987)

    Article  Google Scholar 

  38. S. Nicosia, P. Tomei: Design of global tracking controllers for flexible-joint robots, J. Robot. Syst. 10(6), 835–846 (1993)

    Article  MATH  Google Scholar 

  39. B. Brogliato, R. Ortega, R. Lozano: Global tracking controllers for flexible-joint manipulators: A comparative study, Automatica 31(7), 941–956 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  40. M.W. Spong: Adaptive control of flexible joint manipulators, Syst. Control Lett. 13(1), 15–21 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  41. R. Lozano, B. Brogliato: Adaptive control of robot manipulators with flexible joints, IEEE Trans. Autom. Control 37(2), 174–181 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  42. H. Sira-Ramirez, M.W. Spong: Variable structure control of flexible joint manipulators, Int. Robot. Autom. 3(2), 57–64 (1988)

    Google Scholar 

  43. A. De Luca, G. Ulivi: Iterative learning control of robots with elastic joints, IEEE Int. Conf. Robot. Autom. (Nice 1992) pp. 1920–1926

    Google Scholar 

  44. S. Nicosia, P. Tomei, A. Tornambè: A nonlinear observer for elastic robots, IEEE J. Robot. Autom. 4(1), 45–52 (1988)

    Article  Google Scholar 

  45. S. Nicosia, P. Tomei: A method for the state estimation of elastic joint robots by global position measurements, Int. J. Adapt. Contr. Signal Process. 4(6), 475–486 (1990)

    Article  MATH  Google Scholar 

  46. A. De Luca, D. Schröder, M. Thümmel: An acceleration-based state observer for robot manipulators with elastic joints, IEEE Int. Conf. Robot. Autom. (Rome 2007) pp. 3817–3823

    Google Scholar 

  47. M.W. Spong: On the force control problem for flexible joint manipulators, IEEE Trans. Autom. Control 34(1), 107–111 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  48. J.K. Mills: Stability and control of elastic-joint robotic manipulators during constrained-motion tasks, IEEE Trans. Robot. Autom. 8(1), 119–126 (1992)

    Article  Google Scholar 

  49. K.P. Jankowski, H.A. El Maraghy: Dynamic decoupling for hybrid control of rigid-/flexible-joint robots interacting with the environment, IEEE Trans. Robot. Autom. 8(5), 519–534 (1992)

    Article  Google Scholar 

  50. T. Lin, A.A. Goldenberg: A unified approach to motion and force control of flexible joint robots, IEEE Int. Conf. Robot. Autom. (Minneapolis 1996) pp. 1115–1120

    Google Scholar 

  51. W. Book, O. Maizza-Neto, D.E. Whitney: Feedback Control of Two Beam, Two Joint Systems with Distributed Flexibility, ASME J. Dyn. Syst. Meas. Control 97(4), 424–431 (1975)

    Article  Google Scholar 

  52. W. Book: Characterization of Strength and Stiffness Constraints on Manipulator Control, In: Theory and Practice of Robots and Manipulators (Elsevier, Amsterdam 1977) pp. 37–45

    Google Scholar 

  53. T.E. Alberts, W. Book, S. Dickerson: Experiments in Augmenting Active Control of a Flexible Structure with Passive Damping, AIAA 24th Aerospace Sciences Meeting (Reno 1986)

    Google Scholar 

  54. T. Bailey, J.E. Hubbard Jr.: Distributed piezoelectric-polymer active vibration control of a cantilever beam, J. Guid. Control Dyn. 8(5), 605–611 (1985)

    Article  MATH  Google Scholar 

  55. W. Book, V. Sangveraphunsiri, S. Le: The Bracing Strategy for Robot Operation, Joint IFToMM-CISM Symposium on the Theory of Robots and Manipulators (RoManSy) (Udine 1984)

    Google Scholar 

  56. W. Book: Analysis of Massless Elastic Chains with Servo Controlled Joints, ASME J. Dyn. Syst. Meas. Control 101(3), 187–192 (1979)

    Article  MATH  Google Scholar 

  57. E.C. Pestel, F.A. Leckie: Matrix Methods in Elastomechanics (McGraw Hill, New York 1963)

    Google Scholar 

  58. R. Krauss: Transfer Matrix Modeling. Ph.D. Thesis (School of Mechanical Engineering, Georgia Institute of Technology 2006)

    Google Scholar 

  59. W.J. Book: Modeling, Design and Control of Flexible Manipulator Arms. Ph.D. Thesis (Department of Mechanical Engineering, Massachusetts Institute of Technology 1974)

    Google Scholar 

  60. W. Book: Recursive Lagrangian Dynamics of Flexible Manipulators, Int. J. Robot. Res. 3(3), 87–106 (1984)

    Article  Google Scholar 

  61. W.J. Book, S.H. Lee: Vibration Control of a Large Flexible Manipulator by a Small Robotic Arm, Proc. Am. Contr. Conf. (Pittsburgh 1989) pp. 1377–1380

    Google Scholar 

  62. J. Lew, S.-M. Moon: A Simple Active Damping Control for Compliant Base Manipulators, IEEE/ASME Trans. Mechatronics 2, 707–714 (1995)

    Google Scholar 

  63. W.J. Book, J.C. Loper: Inverse Dynamics for Commanding Micromanipulator Inertial Forces to Damp Macromanipulator Vibration, IEEE, Robot Society of Japan International Conference on Intelligent Robots and Systems (Kyongju 1999)

    Google Scholar 

  64. I. Sharf: Active Damping of a Large Flexible Manipulator with a Short-Reach Robot, Proc. Of the American Control Conference (Seattle 1995) pp. 3329–3333

    Google Scholar 

  65. L. George, W.J. Book: Inertial Vibration Damping Control of a Flexible Base Manipulator, IEEE/ASME Transactions on Mechatronics (2003)

    Google Scholar 

  66. J.F. Calvert, D.J. Gimpel: Method and Apparatus for Control of System Output in Response to System Input, Patent 2801351 (1957)

    Google Scholar 

  67. O.J.M. Smith: Feedback Control Systems (McGraw Hill, New York 1958)

    Google Scholar 

  68. N. Singer, W.P. Seering: Preshaping Command Inputs to Reduce System Vibration, ASME J. Dyn. Syst. Meas. Contr. 112(1), 76–82 (1990)

    Article  Google Scholar 

  69. W. Singhose, W. Seering, N. Singer: Residual Vibration Reduction Using Vector Diagrams to Generate Shaped Inputs, J. Mech. Des. 2, 654–659 (1994)

    Article  Google Scholar 

  70. D.P. Magee, W.J. Book: The Application of Input Shaping to a System with Varying Parameters, Proceedings of the 1992 Japan-U.S.A. Symposium on Flexible Automation (San Francisco 1992) pp. 519–526

    Google Scholar 

  71. D.P. Magee, W.J. Book: Optimal Arbitrary Time-delay (OAT) Filter and Method to Minimize Unwanted System Dynamics, Patent 6078844 (2000)

    Google Scholar 

  72. S. Rhim, W.J. Book: Noise Effect on Time-domain Adaptive Command Shaping Methods for Flexible Manipulator Control, IEEE Trans. Control Syst. Technol. 9(1), 84–92 (2001)

    Article  Google Scholar 

  73. D.-S. Kwon, W.J. Book: A Time-Domain Inverse Dynamic Tracking Control of a Single-Link Flexible Manipulator, J. Dyn. Syst. Meas. Control 116, 193–200 (1994)

    Article  MATH  Google Scholar 

  74. D.S. Kwon: An Inverse Dynamic Tracking Control for a Bracing Flexible Manipulator. Ph.D. Thesis (School of Mechanical Engineering, Georgia Institute of Technology 1991)

    Google Scholar 

  75. R.H. Cannon, E. Schmitz: Initial Experiments on the End-Point Control of a Flexible One-Link Robot, Int. J. Robot. Res. 3(3), 62–75 (1984)

    Article  Google Scholar 

  76. A. Truckenbrot: Modeling and Control of Flexible Manipulator Structures, Proc. 4th CISM-IFToMM Ro.Man.Sy. (Zaborow 1981) pp. 90–101

    Google Scholar 

  77. G.G. Hastings, W.J. Book: Reconstruction and Robust Reduced-Order Observation of Flexible Variables, ASME Winter Annual Meeting (Anaheim 1986)

    Google Scholar 

  78. B.S. Yuan, J.D. Huggins, W.J. Book: Small Motion Experiments with a Large Flexible Arm with Strain Feedback, Proceedings of the 1989 American Control Conference (Pittsburgh 1989) pp. 2091–2095

    Google Scholar 

  79. D. Wang, M. Vidyasagar: Passive Control of a Stiff Flexible Link, Int. J. Robot. Res. 11, 572–578 (1992)

    Article  Google Scholar 

  80. K. Obergfell, W.J. Book: Control of Flexible Manipulators Using Vision and Modal Feedback, Proceedings of the ICRAM (Istanbul 1995)

    Google Scholar 

  81. W.J. Book: Controlled Motion in an Elastic World, ASME J. Dyn. Syst. Meas. Control 2B, 252–261 (1993), 50th Anniversary Issue

    Article  Google Scholar 

  82. C. Canudas-de-Wit, B. Siciliano, G. Bastin (eds.): Theory of Robot Control (Springer, Berlin, Heidelberg 1996)

    MATH  Google Scholar 

  83. G. Hirzinger, N. Sporer, J. Butterfass, M. Grebenstein: Torque-Controlled Lightweight Arms and Articulated Hands: Do We Reach Technological Limits Now?, Int. J. Robot. Res. 23(4,5), 331–340 (2004)

    Article  Google Scholar 

  84. Camotion Inc.: http://www.camotion.com (Camotion Inc., Atlanta 2007)

  85. B. Rooks: High Speed Delivery and Low Cost from New ABB Packaging Robot, Ind. Robot. Int. J. 26(4), 267–275 (1999)

    Article  Google Scholar 

  86. T. Trautt, E. Bayo: Inverse Dynamics of Non-Minimum Phase Systems with Non-Zero Initial Conditions, Dyn. Control 7(1), 49–71 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  87. B. Siciliano, W. Book: A Singular Perturbation Approach to Control of Lightweight Flexible Manipulators, Int. J. Robot. Res. 7(4), 79–90 (1988)

    Article  Google Scholar 

  88. F. Ghorbel, M.W. Spong: Singular Perturbation Model of Robots with Elastic Joints and Elastic Links Constrained by a Rigid Environment, J. Intell. Robot. Syst. 22(2), 143–152 (1998)

    Article  Google Scholar 

  89. J. Guldner, J. Shi, V. Utkin: Sliding Mode Control in Electromechanical Systems (Taylor Francis, London, Philadelphia 1999)

    Google Scholar 

  90. J.-H. Ryu, D.-S. Kwon, B. Hannaford: Control of a Flexible Manipulator with Noncollocated Feedback: Time-domain Passivity Approach, IEEE Trans. Robot. 20(4), 776–780 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alessandro De Luca Prof or Wayne Book Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

De Luca, A., Book, W. (2008). Robots with Flexible Elements. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics