Skip to main content

AI Reasoning Methods for Robotics

  • Reference work entry
Springer Handbook of Robotics

Abstract

Artificial intelligence (AI) reasoning technology involving, e.g., inference, planning, and learning, has a track record with a healthy number of successful applications. So, can it be used as a toolbox of methods for autonomous mobile robots? Not necessarily, as reasoning on a mobile robot about its dynamic, partially known environment may differ substantially from that in knowledge-based pure software systems, where most of the named successes have been registered.

This Chapter sketches the main robotics-relevant topics of symbol-based AI reasoning. Basic methods of knowledge representation and inference are described in general, covering both logic- and probability-based approaches. Then, some robotics-related particularities are addressed specially: issues in logic-based high-level robot control, fuzzy logics, and reasoning under time constraints. Two generic applications of reasoning are then described in some detail: action planning and learning.

General reasoning is currently not a standard feature onboard autonomous mobile robots. Beyond sketching the state of the art in robotics-related AI reasoning, this Chapter points to the involved research problems that remain to be solved towards that end.

The Chapter first reviews knowledge representation and deduction in general (Sect. 9.1), and then goes into some detail regarding reasoning issues that are considered particularly relevant for applications in robots (Sect. 9.2). Having presented reasoning methods, we then enter the field of generic reasoning applications, namely, action planning (Sect. 9.3) and machine learning (Sect. 9.4). Section 9.5 concludes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AI:

artificial intelligence

BN:

Bayes network

DBNs:

dynamic Bayesian networks

DL:

description logics

EM:

expectation maximization

FOPL:

first-order predicate logic

HTN:

hierarchical task network

ILP:

inductive logic programming

KR:

knowledge representation

MDP:

Markovian decision process

ML:

machine learning

ML:

maximum likelihood

NASA:

National Aeronautics and Space Agency

NN:

neural networks

PI:

policy iteration

POMDP:

partially observable MDP

PRS:

procedural reasoning system

RL:

reinforcement learning

SHOP:

simple hierarchical ordered planner

SIPE:

system for interactive planning and execution monitoring

VI:

value iteration

WWW:

world wide web

References

  1. S. Harnad: The symbol grounding problem, Physica D 42, 335–346 (1990)

    Article  Google Scholar 

  2. S. Coradeschi, A. Saffiotti: An introduction to the anchoring problem, Robot. Auton. Syst. 43(2–3), 85–96 (2003)

    Article  Google Scholar 

  3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider (Eds.): The Description Logic Handbook (Cambridge Univ. Press, Cambridge 2003)

    MATH  Google Scholar 

  4. S. Russell, P. Norvig: Artificial Intelligence: A Modern Approach, 2nd edn. (Prentice Hall, Englewood Cliffs 2003)

    Google Scholar 

  5. R.J. Brachman, H.J. Levesque: Knowledge Representation and Reasoning (Morgan Kaufmann, San Francisco 2004)

    Google Scholar 

  6. W.V.O. Quine: Methods of Logic, 4th edn. (Harvard Univ. Press, Cambridge 1955)

    Google Scholar 

  7. Z. Manna, R. Waldinger: The Deductive Foundations of Computer Programming: A One-Volume Version of “The Logical Basis for Computer Programming” (Addison-Wesley, Reading 1993)

    Google Scholar 

  8. W. Hodges: Elementary predicate logic. In: Handbook of Philosophical Logic, Vol. I, ed. by D. Gabbay, F. Guenthner (D. Reidel, Dordrecht 1983)

    Google Scholar 

  9. A. Robinson, A. Voronkov (Eds.): Handbook of Automated Reasoning (Elsevier Science, Amsterdam 2001)

    MATH  Google Scholar 

  10. M. Davis, G. Logemann, D. Loveland: A machine program for theorem proving, Commun. ACM 5(7), 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Franco, H. Kautz, H. Kleine Büning, H. v. Maaren, E. Speckenmeyer, B. Selman: Special issue: theory and applications of satisfiability testing, Ann. Math. Artif. Intell. 43, 1–365 (2005)

    MathSciNet  Google Scholar 

  12. The Web Ontology Language OWL. http://www.w3.org/TR/owl-features/

    Google Scholar 

  13. G. Antoniou, F. v.Harmelen: A Semantic Web Primer (MIT Press, Cambridge 2004)

    Google Scholar 

  14. K.L. Chung, F. AitSahila: Elementary Probability Theory (Springer, Berlin 2003)

    MATH  Google Scholar 

  15. J. Pearl: Probabilistic Reasoning in Intelligent Systems (Morgan Kaufmann, San Mateo 1988)

    Google Scholar 

  16. R. Brooks: Intelligence without representation, Artif. Intell. 47, 139–159 (1991)

    Article  Google Scholar 

  17. J. McCarthy, P. Hayes: Some philosophical problems from the standpoint of artificial intelligence, Machine Intell. 4, 463–507 (1969)

    MATH  Google Scholar 

  18. H. Levesque, R. Reiter, Y. Lespérance, F. Lin, R. Scherl: Golog: a logic programming language for dynamic domains, J. Logic Programm. 31, 59–83 (1997)

    Article  MATH  Google Scholar 

  19. M. Shanahan, M. Witkowski: High-level robot control through logic, ATAL ʼ00, 7th Intl. Workshop Intell. Agents VII. Agent Theories Architectures and Languages 2000 (Springer, Berlin 2001) pp. 104–121

    Chapter  Google Scholar 

  20. M. Thielscher: Reasoning Robots. The Art and Science of Programming Robotic Agents (Springer, Berlin 2005)

    MATH  Google Scholar 

  21. A. Saffiotti, K. Konolige, E.H. Ruspini: A multivalued logic approach to integrating planning and control, J. Artif. Intell. 76, 481–526 (1995)

    Article  Google Scholar 

  22. R.J. Firby: An investigation into reactive planning in complex domains, AAAI 1987 (Morgan Kaufmann, San Mateo 1987) pp. 202–206

    Google Scholar 

  23. M.P. Georgeff, A.L. Lansky: Reactive Reasoning and Planning, AAAI 1987 (Morgan Kaufmann, San Mateo 1987)

    Google Scholar 

  24. M.P. Georgeff, F.F. Ingrand: Decision-making in an embedded reasoning system, IJCAI 1989 (Morgan Kaufmann, San Mateo 1989)

    Google Scholar 

  25. M. Boddy, T.L. Dean: Solving time-dependent planning problems, IJCAI 1989 (Morgan Kaufmann, San Mateo 1989)

    Google Scholar 

  26. S. Zilberstein: Operational rationality through compilation of anytime algorithms, AI Mag. 16(2), 79–80 (1995)

    Google Scholar 

  27. M. Ghallab, D. Nau, P. Traverso: Automated Planning: Theory and Practice (Morgan Kaufmann, San Francisco 2004)

    MATH  Google Scholar 

  28. R.E. Fikes, N.J. Nilsson: strips: a new approach to theorem proving in problem solving, J. Artif. Intell. 2, 189–208 (1971)

    Article  MATH  Google Scholar 

  29. R.E. Fikes, P.E. Hart, N.J. Nilsson: Learning and executing generalized robot plans, J. Artif. Intell. 3, 251–288 (1972)

    Article  Google Scholar 

  30. N.J. Nilsson: Shakey the Robot. SRI International, Tech. Note TN 323, 1984. www.ai.sri.com/shakey/

    Google Scholar 

  31. J. Rintanen, J. Hoffmann: An overview of recent algorithms for AI planning, KI 15(2), 5–11 (2001)

    Google Scholar 

  32. PLANET: Euopean Network of Excellence in AI Planning. http://www.planet-noe.org/

    Google Scholar 

  33. PLANET Technological Roadmap on AI Planning and Scheduling. http: //www.planet-noe.org/service/ Resources/Roadmap/Roadmap2.pdf. 2003

    Google Scholar 

  34. D. McDermott, M. Ghallab, A. Howe, A. Ram, M. Veloso, D. S. Weld, D. E. Wilkins: PDDL – The Planning Domain Definition Language, Tech Report, Vol. CVC TR-98-003/DCS TR-1165 (Yale Center for Computational Vision and Control, New Haven 1998)

    Google Scholar 

  35. M. Fox, D. Long: PDDL2.1: an extension to PDDL for expressing temporal planning domains, J. Artif. Intell. Res. 20, 61–124 (2003)

    MATH  Google Scholar 

  36. T. Bylander: The computational complexity of propositional strips planning, J. Artif. Intell. 69, 165–204 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  37. D. McAllester, D. Rosenblitt: Systematic nonlinear planning, AAAI 1991 (Morgan Kaufmann, San Mateo 1991)

    Google Scholar 

  38. D. Wilkins: Domain-independent planning: representation and plan generation, J. Artif. Intell. 22, 269–301 (1984)

    Article  Google Scholar 

  39. D.S. Nau, T.C. Au, O. Ilghami, U. Kuter, M. Murdock, D. Wu, F. Yaman: Shop2: an HTN planning system, J. Artif. Intell. Res. 20, 379–404 (2003)

    MATH  Google Scholar 

  40. A.L. Blum, M.L. Furst: Fast planning through plan graph analysis, J. Artif. Intell. 90, 281–300 (1997)

    Article  MATH  Google Scholar 

  41. C. Green: Application of theorem proving to problem solving, IJCAI 1969 (Morgan Kaufmann, San Mateo 1969)

    Google Scholar 

  42. P. Doherty, J. Kvarnström: TALplanner: a temporal logic based planner, AI Mag. 22(3), 95–102 (2001)

    Google Scholar 

  43. H. Kautz, B. Selman: Unifying SAT-based and graph-based planning, IJCAI, Stockholm 1999 (Morgan Kaufmann, San Mateo 1999)

    Google Scholar 

  44. S. Thrun, W. Burgard, D. Fox: Probabilistic Robotics (MIT Press, Cambridge 2005)

    MATH  Google Scholar 

  45. B. Bonet, H. Geffner: Planning with incomplete information as heuristic search in belief space, AIPS 2000 (AAAI, Menlo Park 2000)

    Google Scholar 

  46. M. Beetz, J. Hertzberg, M. Ghallab, M.E. Pollack (Eds.): Advances in Plan-Based Control of Robotic Agents, Vol. 2466 (Springer, Berlin 2002)

    MATH  Google Scholar 

  47. D. McDermott: Robot planning, AI Mag. 13(2), 55–79 (1992)

    MathSciNet  Google Scholar 

  48. M. Beetz: Plan representation for robotic agents, AIPS, Toulouse 2002 (AAAI, Menlo Park 2002)

    Google Scholar 

  49. N. Lavrac, S. Dzeroski: Inductive Logic Programming: Techniques and Applications (Ellis Horwood, New York 1994)

    MATH  Google Scholar 

  50. R.S. Sutton, A.G. Barto: Reinforcement Learning: An Introduction (MIT Press, Cambridge 1998)

    Google Scholar 

  51. C.J. Watkins: Models of Delayed Reinforcement Learning. Ph.D. Thesis (Cambridge Univ., Cambridge 1989)

    Google Scholar 

  52. N. Muscettola, P. Nayak, B. Pell, B.C. Williams: Remote Agent: to boldly go where no AI system has gone before, J. Artif. Intell. 103, 5–47 (1998)

    Article  MATH  Google Scholar 

  53. H.I. Christensen, H.H. Nagel (Eds.): Cognitive Vision Systems – Sampling the Spectrum of Approaches LNCS (Springer, Berlin 2006)

    Google Scholar 

  54. J. Artif. Intell. Res. http://www.jair.org

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joachim Hertzberg Prof or Raja Chatila Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Hertzberg, J., Chatila, R. (2008). AI Reasoning Methods for Robotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics