Skip to main content

Force and Moment Measurement

  • Reference work entry

Part of the book series: Springer Handbooks ((SHB))

Abstract

Measurement of steady and fluctuating forces acting on a body in a flow is one of the main tasks in wind tunnel experiments. In aerodynamic testing, strain gauge balances will usually be applied for this task as, particularly in the past, the main focus was directed on the measurement of steady forces. In many applications, however, balances based on piezoelectric multicomponent force transducers are a recommended alternative solution. Contrary to conventional strain gauge balances, a piezo balance features high rigidity and low interference between the individual force components. High rigidity leads to very high natural frequencies of the balance itself, which is a prerequisite for applications in unsteady aerodynamics, particularly in aeroelasticity. Moreover for measurement of extremely small fluctuations, the possibility exists to exploit the full resolution independently from the preload.

Concerning the measurement of small, steady forces, the application of piezo balances is restricted due to a drift of the signal at constant load. However, this problem is not as critical as generally believed since simple corrections are possible.

The aim of this chapter is to give an impression of the possibilities, advantages and limitations offered by the use of piezoelectric balances. Several types of external balances are discussed for wall-mounted models, which can be suspended one-sided or twin-sided. Additionally an internal sting balance is described, which is usually applied inside the model. Reports are given on selected measurements performed in very different wind tunnels, ranging from low-speed to transonic, from short- to continuous running time and encompassing cryogenic and high pressure principles. The latter indicates that special versions of our piezo balances were applied down to temperatures of −150 °C and at pressures of up to 100 bar.

The projects span from a wing/engine combination in a low-speed wind tunnel to flutter tests with a swept-wing performed in a transonic wind tunnel, and include bluff bodies in a high pressure and cryogenic wind tunnel, as well. These tests serve as examples for discussing the fundamental aspects that are essential in developing and applying piezo balances. The principle differences between strain gauge balances and piezo balances will also be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A/D:

analog-to-digital

DIN:

Deutsches Institut für Normung

DLR:

German Aerospace Center

EDM:

electric discharge machining

GUM:

guide of uncertainties in measurement

HDG:

high-pressure windtunnel

ISO:

International Organization for Standards

LCO:

limit-cycle oscillation

MC:

methylene chloride

MC:

modulus-compensating

NACA:

National Advisory Committee for Aeronautics

NASA:

National Aeronautics and Space Administration

RMS:

root-mean-square

TWG:

transonic wind tunnel Göttingen

References

  1. ISO: Guide to the Expression of Uncertainties in Measurements (International Organization for Standardization, Geneva 1995)

    Google Scholar 

  2. AIAA: Assessment of Experimental Uncertainty with Application to Wind Tunnel Testing, AIAA S-071A-1999 (AIAA, Reston 1999)

    Google Scholar 

  3. AIAA: Calibration and Use of Internal Strain Gauge Balances with Application to Wind Tunnel Testing, AIAA R-091-2003 (AIAA, Reston 2003)

    Google Scholar 

  4. B. Ewald, G. Krenz: The accuracy problem of airplane development force testing in cryogenic wind tunnels, AIAA Paper 86-0776, Aerodynamic Testing Conference Palm Beach (AIAA, 1986)

    Google Scholar 

  5. B. Ewald: Balance Accuracy and Repeatability as a Limiting Parameter in Aircraft Development Force Measurements in Conventional and Cryogenic Wind Tunnels, AGARD FDP Symposium, Neapel, September 1987 (AGARD, 1987)

    Google Scholar 

  6. B.C. Carter: Interference Effects of Model Support Systems, AGARD Rep. R 601 (AGARD, 1973)

    Google Scholar 

  7. F.G. Tatnall: Tatnall on Testing (American Society of Metals, Metals Park 1966)

    Google Scholar 

  8. K. Hoffmann: An Introduction to Measurement using Strain Gages (Hottinger Baldwin, Darmstadt 1989), Company Print

    Google Scholar 

  9. Measurement Group: Strain Gage Based Transducers (Measurement Group, Raleigh 1988), Company Print

    Google Scholar 

  10. B. Ewald: Multi-component force balances for conventional and cryogenic wind tunnels, Meas. Sci. Technol. 11, 81–94 (2000)

    Article  Google Scholar 

  11. K. Hufnagel, B. Ewald: Force testing with internal strain gage balances, AGARD FDP Special Course, AGARD R-812. In: Advances in Cryogenic Wind Tunnel Technology (AGARD, 1996)

    Google Scholar 

  12. M. Dubois: Feasability Study on Strain Gage Balances for Cryogenic Wind Tunnels at ONERA, Cryogenic Technology Review Meeting, NLR Amsterdam (1982)

    Google Scholar 

  13. K. Hufnagel: A new Half-Model-Balance for the Cologne-Cryogenic-Wind-Tunnel (KKK), The Second International Symposium on Strain Gauge Balances, Mai 1999, Bedford (TU Darmstadt, Darmstadt 1999)

    Google Scholar 

  14. A. Pope, K.L. Goin: High-Speed Wind Tunnel Testing (Krieger, New York 1978)

    Google Scholar 

  15. G. Bridel: Untersuchung der Kraftschwankungen bei einem querangeströmten Kreiszylinder, Dissertation, Nr. 6108 (ETH Zürich, Zürich 1978), in German

    Google Scholar 

  16. G. Schewe: A multicomponent balance consisting of piezoelectric force transducers for a high-pressure windtunnel, Techn. Messen 12, 447–452 (1982), in German

    Google Scholar 

  17. G. Schewe: On the force fluctuations acting on a circular cylinder in crossflow from subcritical to transcritical Reynolds numbers, J. Fluid Mech. 133, 265 (1983)

    Article  Google Scholar 

  18. G. Schewe: Force measurements in aerodynamics using piezo-electric multicomponent force transducers. Proc. 11th ICIASF ʼ85 Record, Stanford Univ (IEEE, New York 1985) p. 263

    Google Scholar 

  19. N.J. Cook: A sensitive 6-component high-frequency-range balance for building Aerodynamics, J. Phys. E 16, 390–393 (1983)

    Article  Google Scholar 

  20. H. Hönlinger, J. Schweiger, G. Schewe: The use of aeroelastic windtunnel models to prove structural design methods, Proc. No. 403 of the 63rd SMP Meeting of AGARD, Athens, Greece (AGARD, Neuilly-sur-Seine 1986) pp. 9–1–9–15

    Google Scholar 

  21. H. Zingel: Measurement of steady and unsteady airloads on a stiffness scaled model of a modern transport aircraft wing. Proc. Int. Forum on Aeroelasticity and Structural Dynamics, Aachen, DGLR-Bericht 91-06 (DGLR, Bonn 1991) p. 120

    Google Scholar 

  22. H. Psolla-Bress, H. Haselmeyer, A. Hedergott, G. Höhler, H. Holst: High roll experiments on a delta wing in transonic flow, Proc. 19th ICIASF 2001 Record, Cleveland, Ohio, Aug. 27-30 2001 (IEEE, New York 2001) p. 369

    Google Scholar 

  23. G. Gautschi: Piezoelectric Sensorics (Springer, Berlin, Heidelberg 2002)

    Google Scholar 

  24. J. Tichy, G. Gautschi: Piezoelektrische Meßtechnik (Springer, Berlin, Heidelberg 1980), in German

    Google Scholar 

  25. G. Schewe: Beispiele für Kraftmessungen im Windkanal mit piezoelektrischen Mehrkomponentenmeßelementen, Z. Flugwiss. Weltraumforsch. 14, 32–37 (1990), in German

    Google Scholar 

  26. H. Triebstein, G. Schewe, H. Zingel, S. Vogel: Measurements of unsteady airloads on an oscillating engine and a wing/engine combination, J. Aircr. 31(1), 97 (1994)

    Article  Google Scholar 

  27. N. Schaake: Querangeströmte und schiebende Zylinder bei hohen Reynoldszahlen, Dissertation (Univ. Göttingen, Göttingen 1995), DLR-Report No FB 95-37 (DLR, Götzingen 1995)

    Google Scholar 

  28. G. Schewe: Sensitivity of transition phenomena to small perturbations in flow round a circular cylinder, J. Fluid Mech. 172, 33 (1986)

    Article  Google Scholar 

  29. G. Schewe: Reynolds-number effects in flow around more-or-less bluff bodies, J. Wind Eng. Ind. Aerodyn. 89, 1267 (2001)

    Article  Google Scholar 

  30. G. Schewe: Reynolds-number-effects and their influence on flow induced vibrations, Proc. Structural Dynamics Eurodyn 2005 (Millpress, Paris 2005) p. 337

    Google Scholar 

  31. G. Schewe: Nonlinear flow-induced resonances of an H-shaped section, J. Fluid Struct. 3, 327–348 (1989)

    Article  Google Scholar 

  32. D. Schimke, P. Jänker, V. Wendt, B. Junker: Wind tunnel evaluation of a full scale piezoelectric flap control unit, Proc. 24th European Rotorcraft Forum, Marseille, 15-17. Sept. 1998 (Organizer, 1998)

    Google Scholar 

  33. G. Schewe, H. Mai, G. Dietz: Nonlinear effects in transonic flutter with emphasis on manifestations of limit cycle oscillations, J. Fluid Struct. 18, 3 (2003)

    Article  Google Scholar 

  34. G. Dietz, G. Schewe, F. Kießling, M. Sinapius: Limit-Cycle-Oscillation Experiments at a Transport Aircraft Wing Model, Proc. Int. Forum Aeroelasticity and Structural Dynamics 2003, Amsterdam (Netherlands Association of Aeronautical Engineers, 2003)

    Google Scholar 

  35. G. Schewe, C. Steinhoff: Force measurements on a circular cylinder in a cryogenic-Ludwieg-tube using piezoelectric transducers, Exp. Fluids 42(3), 489–494 (2007)

    Article  Google Scholar 

  36. H. Rosemann: The Cryogenic Ludwieg-Tube-Tunnel at Göttingen, AGARD Special Course. In: Cryogenic wind tunnel technology (AGARD, Neuilly-sur-Seine 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Klaus Hufnagel Dr. or Günter Schewe Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Hufnagel, K., Schewe, G. (2007). Force and Moment Measurement. In: Tropea, C., Yarin, A.L., Foss, J.F. (eds) Springer Handbook of Experimental Fluid Mechanics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30299-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30299-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25141-5

  • Online ISBN: 978-3-540-30299-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics