Skip to main content

Nondimensional Representation of the Boundary-Value Problem

  • Reference work entry

Part of the book series: Springer Handbooks ((SHB))

Abstract

Given that an experiment can be considered to represent a physically realizable boundary value (bv) problem and given that the derived measurements are to represent aspects of the solution to the bv problem, it is rational to extend this understanding such that a maximum amount of information can be obtained from a given experiment. The first portion Sect. 2.2.1 establishes the bases for obtaining information regarding the flow associated with a prototype (the object/flow of actual interest) from measurements made in a model study. This section focuses on the large class of flows for which a Newtonian fluid and its governing equations establish the model-to-prototype information exchange.

Dimensional analysis Sect. 2.2.2 provides a complement to Section 2.1 with a less structured - and therefore a more flexible - approach to problems that extend beyond those readily addressed by the Sect. 2.2.1 material. The important issue of collecting experimental results in non-dimensional groups is addressed in Sect. 2.2.2.

The discussion of self-similarity Sect. 2.2.3 addresses the immense compaction of experimental data that is made possible for those flows that exhibit this property. The bases for, and utilization of, self-similarity are explored in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CD:

cyclodextrin

LES:

large-eddy simulation

ODE:

ordinary differential equations

PDE:

partial differential equations

SI:

spark ignition

References

  1. S. Moreau, D. Neal, Y.Khalighi, M. Wang, G. Iaccarino: Validation of unstructured-mesh LES of the trailing edge flow and noise of a Controlled-Diffusion airfoil, Studying Turbulence Using Numerical Simulation Databases–XI: Proceedings of the Summer Programm 2006, Center for Turbulence Research, Stanford University

    Google Scholar 

  2. M.C. Potter, J.F. Foss: Fluid Mechanics (Great Lakes, Wildwood 1982) p. 448

    Google Scholar 

  3. P.A. Thompson: Compressible-Fluid Dynamics (McGraw-Hill, New York 1972)

    MATH  Google Scholar 

  4. S.C. Morris, J.F. Foss: Turbulent boundary layer to single-stream shear layer: the transition region, J. Fluid Mech. 494, 187–221 (2003)

    Article  MATH  Google Scholar 

  5. T. von Kármán: Über laminare und turbulente Reibung, Z. Angew. Math. Mech. 1, 233–252 (1921)

    Article  Google Scholar 

  6. F.M. White: Viscous Fluid Flow, 2nd edn. (McGraw-Hill, New York 1991)

    Google Scholar 

  7. R. Kobayashi, Y. Kohama, C. Takamadate: Spiral vortices in boundary layer transition regime on a rotating disk, Acta Mech. 25, 71–82 (1980)

    Article  Google Scholar 

  8. P.W. Bridgman: Dimensional Analysis (Yale Univ. Press, New Haven 1922)

    Google Scholar 

  9. R.L. Panton: Incompressible Flow, 3rd edn. (Wiley, New York 2005)

    Google Scholar 

  10. F.M. White: Fluid Mechanics, 5th edn. (McGraw-Hill, New York 2003)

    Google Scholar 

  11. Y.A. Çengel, J.M. Cimbala: Fluid Mechanics (McGraw-Hill, New York 2006)

    Google Scholar 

  12. R.M. Schmidt, K.R. Housen: Problem solving with dimensional analysis, The Industrial Physicist 1, 21 (1995)

    Google Scholar 

  13. J.C. Klewicki, H. Miner: Wall pressure structure at high Reynolds number, Division Fluid Dynamics Meeting, Bull. Am. Phys. Soc. (APS, College Park 2002), FH 001

    Google Scholar 

  14. R.L. Panton: Review of wall turbulence described by composite expansions, Appl. Mech. Rev. 58, 1–36 (2005)

    Article  Google Scholar 

  15. J.M.J. den Toonder, F.T.M. Nieuwstadt: Reynolds number effects in a turbulent pipe flow for low to moderate Re, Phys. Fluids 9(11), 3398 (1997)

    Article  Google Scholar 

  16. L.D. Landau, E.M. Lifshitz: Fluid Mechanics, 2nd edn. (Pergamon, Oxford 1987)

    MATH  Google Scholar 

  17. G.I. Barenblatt: Similarity, Self-Similarity and Intermediate Asymptotics (Cambridge Univ. Press, Cambridge 1996)

    Google Scholar 

  18. H. Schlichting: Boundary Layer Theory, 8th edn. (Springer, Berlin, Heidelberg 2000)

    MATH  Google Scholar 

  19. L.I. Sedov: Similarity and Dimensional Methods in Mechanics, 10th edn. (CRC, Boca Raton 1993)

    Google Scholar 

  20. L. Rosenhead: Laminar Boundary Layers (Clarendon, Oxford 1963)

    MATH  Google Scholar 

  21. K. Stewartson: The Theory of Laminar Boundary Layers in Compressible Fluids (Clarendon, Oxford 1965)

    Google Scholar 

  22. S.I. Pai: Fluid Dynamics of Jets (van Nostrand, Toronto, New York 1954)

    MATH  Google Scholar 

  23. L.A. Vulis, V.P. Kashkarov: Theory of Viscous Liquid Jets (Nauka, Moscow 1965)

    Google Scholar 

  24. G.N. Abramovich: The Theory of Turbulent Jets (MIT, Cambridge 1963)

    Google Scholar 

  25. Y. Jaluria: Natural Convection Heat and Mass Transfer (Pergamon, Oxford 1980)

    Google Scholar 

  26. Y.B. Zelʼdovich: Limiting laws of freely rising convective currents. In: Selected Works of Ya.B. Zelʼdovich, Chemical Physics and Hydrodynamics, Vol. 1, ed. by J.P. Ostriker (Princeton Univ. Press, Princeton 1992)

    Google Scholar 

  27. L.I. Sedov: Propagation of strong blast waves, Prikl. Mat. Mekh. 10(2), 241–250 (1946)

    MathSciNet  Google Scholar 

  28. G.I. Taylor: The formation of a blast wave by a very intense explosion, Proc. Roy. Soc. London A 201, 159–186 (1950)

    Article  Google Scholar 

  29. J. von Neumann: The point source solution. In: Collected Works, Vol. VI, ed. by A.J. Taub (Pergamon, Oxford 1963)

    Google Scholar 

  30. A.L. Yarin, D.A. Weiss: Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity, J. Fluid Mech. 283, 141–173 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John Foss Prof. , Ronald Panton or Alexander Yarin Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Foss, J., Panton, R., Yarin, A. (2007). Nondimensional Representation of the Boundary-Value Problem. In: Tropea, C., Yarin, A.L., Foss, J.F. (eds) Springer Handbook of Experimental Fluid Mechanics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30299-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30299-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25141-5

  • Online ISBN: 978-3-540-30299-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics