Estimation of Anatomical Connectivity by Anisotropic Front Propagation and Diffusion Tensor Imaging

  • Marcel Jackowski
  • Chiu Yen Kao
  • Maolin Qiu
  • R. Todd Constable
  • Lawrence H. Staib
Conference paper

DOI: 10.1007/978-3-540-30136-3_81

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3217)
Cite this paper as:
Jackowski M., Kao C.Y., Qiu M., Constable R.T., Staib L.H. (2004) Estimation of Anatomical Connectivity by Anisotropic Front Propagation and Diffusion Tensor Imaging. In: Barillot C., Haynor D.R., Hellier P. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004. MICCAI 2004. Lecture Notes in Computer Science, vol 3217. Springer, Berlin, Heidelberg

Abstract

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) allows one to capture the restricted diffusion of water molecules in fibrous tissues which can be used to infer their structural organization. In this paper, we propose a novel wavefront propagation method for estimating the connectivity in the white matter of the brain using DT-MRI. First, an anisotropic version of the static Hamilton-Jacobi equation is solved by a sweeping method in order to obtain accurate front arrival times and determine connectivity. Our wavefront then propagates using the diffusion tensor rather than its principal eigenvector, which is prone to misclassification in oblate tensor regions. Furthermore, we show that our method is robust to noise and can estimate connectivity pathways across regions where singularities, such as fiber crossings, are present. Preliminary connectivity results on synthetic data and on a normal human brain are illustrated and discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Marcel Jackowski
    • 1
  • Chiu Yen Kao
    • 3
  • Maolin Qiu
    • 1
  • R. Todd Constable
    • 2
  • Lawrence H. Staib
    • 2
  1. 1.Dept. of Diagnostic RadiologyYale School of MedicineNew HavenUSA
  2. 2.Dept. of Diagnostic Radiology and Biomedical EngineeringYale School of MedicineNew HavenUSA
  3. 3.Dept. of MathematicsUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations