Skip to main content

The Neuronal Influence on Retinal Vascular Pathology

  • Chapter
Retinal Vascular Disease

Abstract

Much of the effort to understand diabetic retinopathy has focused on vascular pathology. Due to the influence of diabetes on systemic physiology, it is thought that many changes in retinal vascular cells likely stem from direct biochemical disruptions such as hyperglycemia. Other contributing factors may include circulating cytokines, advanced glycation end products, cholesterol, albumin, and electrolytes, and more complex functional changes such as reduced elasticity in erythrocytes and other blood cells. These and other changes could be responsible for generating the vascular pathologies that have been well established in diabetic retinopathy. There is increasing evidence, however, for involvement of the neural elements of the retina, the neurons and glial cells, and it is no longer clear if the pathological changes in these cells result from vascular dysfunction, such as the reduction in effectiveness of the blood-retinal barrier, or if diabetic physiology induces neural pathology, which in turn gives rise to vascular changes. A third possibility is that early vascular and neural responses to diabetes are independent phenomena that are triggered by different factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-El-Asrar AM, Dralands L, Missotten L, Al-Jadaan IA, Geboes K (2004) Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest Ophthalmol Vis Sci 45(8):2760–2766

    PubMed  Google Scholar 

  2. Adler R, Curcio C, Hicks D, Price D, Wong F (1999) Cell death in age-related macular degeneration. Mol Vision 5:31

    CAS  Google Scholar 

  3. Agardh E, Bruun A, Agardh CD (2001) Retinal glial cell immunoreactivity and neuronal cell changes in rats with STZ-induced diabetes. Curr Eye Res 23(4):276–84

    PubMed  CAS  Google Scholar 

  4. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331(22):1480–7

    PubMed  CAS  Google Scholar 

  5. Aizu Y, Oyanagi K, Hu J, Nakagawa H (2002) Degeneration of retinal neuronal processes and pigment epithelium in the early stage of the streptozotocin-diabetic rats. Neuropathology 22(3):161–70

    PubMed  Google Scholar 

  6. Ambati J, Chalam KV, Chawla DK, D’Angio CT, Guillet EG, Rose SJ, Vanderlinde RE, Ambati BK (1997) Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol 115(9):1161–6

    PubMed  CAS  Google Scholar 

  7. Amin RH, Frank RN, Kennedy A, Eliott D, Puklin JE, Abrams GW (1997) Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 38(1):36–47

    PubMed  CAS  Google Scholar 

  8. Amrite AC, Ayalasomayajula SP, Cheruvu NP, Kompella UB (2006) Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Invest Ophthalmol Vis Sci 47(3):1149–60

    PubMed  Google Scholar 

  9. Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM, Gardner TW (1998) Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Diabetes 47(12):1953–9

    PubMed  CAS  Google Scholar 

  10. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW (1999) Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden-1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 274(33):23463–7

    PubMed  CAS  Google Scholar 

  11. Asnaghi V, Gerhardinger C, Hoehn T, Adeboje A, Lorenzi M (2003) A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes 52(2):506–511

    PubMed  CAS  Google Scholar 

  12. Barber AJ (2003) A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Progr Neuropsychopharmacol Biol Psychiatry 27(2):283–290

    CAS  Google Scholar 

  13. Barber AJ, Antonetti DA (2003) Mapping the blood vessels with paracellular permeability in the retinas of diabetic rats. Invest Ophthalmol Vis Sci 44(12):5410–5416

    PubMed  Google Scholar 

  14. Barber AJ, Lieth E (1997) Agrin accumulates in the brain microvascular basal lamina during development of the blood-brain barrier. Dev Dyn 208(1):62–74

    PubMed  CAS  Google Scholar 

  15. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW (1998) Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 102(4):783–791

    PubMed  CAS  Google Scholar 

  16. Barber AJ, Antonetti DA, Gardner TW (2000) Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. Invest Ophthalmol Vis Sci 41(11):3561–8

    PubMed  CAS  Google Scholar 

  17. Barber AJ, Nakamura M, Wolpert EB, Reiter CEN, Seigel GM, Antonetti DA, Gardner TW (2001) Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. J Biol Chem 276(35):32814–32821

    PubMed  CAS  Google Scholar 

  18. Barber AJ, Antonetti DA, Kern TS, Reiter CE, Soans RS, Krady JK, Levison SW, Gardner TW, Bronson SK (2005) The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci 46(6):2210–8

    PubMed  Google Scholar 

  19. Bearse MA, Jr, Han Y, Schneck ME, Barez S, Jacobsen C, Adams AJ (2004) Local multifocal oscillatory potential abnormalities in diabetes and early diabetic retinopathy. Invest Ophthalmol Vis Sci 45(9):3259–65

    PubMed  Google Scholar 

  20. Bloodworth JM, Jr (1962) Diabetic retinopathy. Diabetes 11:1–22

    PubMed  Google Scholar 

  21. Bresnick GH (1986) Diabetic retinopathy viewed as a neurosensory disorder. Arch Ophthalmol 104:989–990

    PubMed  CAS  Google Scholar 

  22. Bui BV, Armitage JA, Tolcos M, Cooper ME, Vingrys AJ (2003) ACE inhibition salvages the visual loss caused by diabetes. Diabetologia 46(3):401–8

    PubMed  CAS  Google Scholar 

  23. Callahan LM, Vaules WA, Coleman PD (2002) Progressive reduction of synaptophysin message in single neurons in Alzheimer disease. J Neuropathol Exp Neurol 61(5):384–95

    PubMed  CAS  Google Scholar 

  24. Caputo S, Di Leo MA, Falsini B, Ghirlanda G, Porciatti V, Minella A, Greco AV (1990) Evidence for early impairment of macular function with pattern ERG in type I diabetic patients. Diabetes Care 13(4):412–8

    PubMed  CAS  Google Scholar 

  25. Chehade JM, Haas MJ, Mooradian AD (2002) Diabetes-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1) expression. Neurochem Res 27(3):249–52

    PubMed  CAS  Google Scholar 

  26. Cunha-Vaz JG (1983) Studies on the pathophysiology of diabetic retinopathy. The blood-retinal barrier in diabetes. Diabetes 32Suppl 2:20–7

    PubMed  Google Scholar 

  27. Cunha-Vaz JG (2004) The blood-retinal barriers system. Basic concepts and clinical evaluation. Exp Eye Res 78(3):715–21

    PubMed  CAS  Google Scholar 

  28. Cunha-Vaz J, Faria de Abreu JR, Campos AJ (1975) Early breakdown of the blood-retinal barrier in diabetes. Br J Ophthalmol 59(11):649–56

    Google Scholar 

  29. Del Bo R, Scarlato M, Ghezzi S, Martinelli Boneschi F, Fenoglio C, Galbiati S, Virgilio R, Galimberti D, Galimberti G, Crimi M, Ferrarese C, Scarpini E, Bresolin N, Comi GP (2005) Vascular endothelial growth factor gene variability is associated with increased risk for AD. Ann Neurol 57(3):373–80

    Google Scholar 

  30. Di Leo MA, Falsini B, Caputo S, Ghirlanda G, Porciatti V, Greco AV (1990) Spatial frequency-selective losses with pattern electroretinogram in type 1 (insulin-dependent) diabetic patients without retinopathy. Diabetologia 33(12):726–30

    PubMed  Google Scholar 

  31. Do Carmo A, Ramos P, Reis A, Proenca R, Cunha-Vaz JG (1998) Breakdown of the inner and outer blood retinal barrier in streptozotocin-induced diabetes. Exp Eye Res 67(5):569–575

    Google Scholar 

  32. Duh E, Aiello LP (1999) Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox. Diabetes 48(10):1899–906

    PubMed  CAS  Google Scholar 

  33. El-Remessy AB, Al-Shabrawey M, Khalifa Y, Tsai NT, Caldwell RB, Liou GI (2006) Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes. Am J Pathol 168(1):235–44

    PubMed  CAS  Google Scholar 

  34. Famiglietti EV, Stopa EG, McGookin ED, Song P, LeBlanc V, Streeten BW (2003) Immunocytochemical localization of vascular endothelial growth factor in neurons and glial cells of human retina. Brain Res 969(1–2):195–204

    PubMed  CAS  Google Scholar 

  35. Gardner TW (1995) Histamine, ZO-1 and increased blood-retinal barrier permeability in diabetic retinopathy. Trans Am Ophthalmol Soc 93:583–621

    PubMed  CAS  Google Scholar 

  36. Gardner TW, Lieth E, Khin SA, Barber AJ, Bonsall DJ, Lesher T, Rice K, Brennan WA, Jr (1997) Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells. Invest Ophthalmol Vis Sci 38(11):2423–7

    PubMed  CAS  Google Scholar 

  37. Gastinger MJ, Barber AJ, Khin SA, McRill CS, Gardner TW, Marshak DW (2001) Abnormal centrifugal axons in streptozotocin-diabetic rat retinas. Invest Ophthalmol Vis Sci 42(11):2679–2685

    PubMed  CAS  Google Scholar 

  38. Gastinger MJ, Conboy E, Bronson SK, Barber AJ (2006) Retinal ganglion cells undergo pathological changes in Ins2Akita diabetic mice. ARVO 2006 Abstract #2059

    Google Scholar 

  39. Gastinger MJ, Singh RS, Barber AJ (2006) Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas. Invest Ophthalmol Vis Sci 47(7):3143–50

    PubMed  Google Scholar 

  40. Gerhardinger C, Brown LF, Roy S, Mizutani M, Zucker CL, Lorenzi M (1998) Expression of vascular endothelial growth factor in the human retina and in nonproliferative diabetic retinopathy. Am J Pathol 152(6):1453–62

    PubMed  CAS  Google Scholar 

  41. Glass JD, Griffin JW (1991) Neurofilament redistribution in transected nerves: evidence for bidirectional transport of neurofilaments. J Neurosci 11(10):3146–54

    PubMed  CAS  Google Scholar 

  42. Goto R, Doi M, Ma N, Semba R, et al. (2005) Contribution of nitric oxide-producing cells in normal and diabetic rat retina. Jpn J Ophthalmol 49:363–70

    PubMed  CAS  Google Scholar 

  43. Greco AV, Di Leo MA, Caputo S, Falsini B, Porciatti V, Marietti G, Ghirlanda G (1994) Early selective neuroretinal disorder in prepubertal type 1 (insulin-dependent) diabetic children without microvascular abnormalities. Acta Diabetologica 31(2):98–102

    PubMed  CAS  Google Scholar 

  44. Hammes HP, Federoff HJ, Brownlee M(1995) Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med 1(5):527–34

    PubMed  CAS  Google Scholar 

  45. Hayashi T, Abe K, Itoyama Y (1998) Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J Cereb Blood Flow Metabol 18(8):887–95

    CAS  Google Scholar 

  46. Huxlin KR, Dreher Z, Schulz M, Dreher B (1995) Glial reactivity in the retina of adult rats. Glia 15(2):105–18

    PubMed  CAS  Google Scholar 

  47. Hyvarinen L, Laurinen P, Rovamo J (1983) Contrast sensitivity in evaluation of visual impairment due to macular degeneration and optic nerve lesions. Acta Ophthalmol 61(2):161–70

    CAS  Google Scholar 

  48. Ino-Ue M, Zhang L, Naka H, Kuriyama H, Yamamoto M (2000) Polyol metabolism of retrograde axonal transport in diabetic rat large optic nerve fiber. Invest Ophthalmol Vis Sci 41(13):4055–8

    PubMed  CAS  Google Scholar 

  49. Ito U, Go KG, Walker JT, Jr, Spatz M, Klatzo I (1976) Experimental cerebral ischemia in Mongolian gerbils III. Behaviour of the blood-brain barrier. Acta Neuropathol 34(1):1–6

    PubMed  CAS  Google Scholar 

  50. Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325(6101):253–7

    PubMed  CAS  Google Scholar 

  51. Jin KL, Mao XO, Greenberg DA (2000) Vascular endothelial growth factor: Direct neuroprotective effect in in vitro ischemia. PNAS 97(18):10242–10247

    PubMed  CAS  Google Scholar 

  52. Jones CW, Cunha-Vaz JG, Rusin MM (1982) Vitreous fluorophotometry in the alloxan-and streptozocin-treated rat. Arch Ophthalmol 100(7):1141–5

    PubMed  CAS  Google Scholar 

  53. Kalaria RN (1999) The blood-brain barrier and cerebrovascular pathology in Alzheimer’s disease. Ann N Y Acad Sci 893:113–25

    PubMed  CAS  Google Scholar 

  54. Kalaria RN, Cohen DL, Premkumar DR, Nag S, LaManna JC, Lust WD (1998) Vascular endothelial growth factor in Alzheimer’s disease and experimental cerebral ischemia. Brain Res Mol Brain Res 62(1):101–5

    PubMed  CAS  Google Scholar 

  55. Kern TS, Tang J, Mizutani M, Kowluru RA, Nagaraj RH, Romeo G, Podesta F, Lorenzi M (2000) Response of capillary cell death to aminoguanidine predicts the development of retinopathy: comparison of diabetes and galactosemia. Invest Ophthalmol Vis Sci 41(12):3972–8

    PubMed  CAS  Google Scholar 

  56. Kerrigan LA, Zack DJ, Quigley HA, Smith SD, Pease ME (1997) Tunel-positive ganglion cells in human primary open-angle glaucoma. Arch Ophthalmol 115(8):1031–1035

    PubMed  CAS  Google Scholar 

  57. Krady JK, Basu A, Allen CM, Xu Y, Lanoue KF, Gardner TW, Levison SW (2005) Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54(5):1559–65

    PubMed  CAS  Google Scholar 

  58. Lee MY, Ju WK, Cha JH, Son BC, Chun MH, Kang JK, Park CK (1999) Expression of vascular endothelial growth factor mRNA following transient forebrain ischemia in rats. Neurosci Lett 265(2):107–10

    PubMed  CAS  Google Scholar 

  59. Lieth E, Barber AJ, Xu B, Dice C, Ratz MJ, Tanase D, Strother JM (1998) Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Diabetes 47(5):815–20

    PubMed  CAS  Google Scholar 

  60. Lieth E, LaNoue KF, Antonetti DA, Ratz M (2000) Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. Exp Eye Res 70(6):723–730

    PubMed  CAS  Google Scholar 

  61. Lobo CL, Bernardes RC, Santos FJ, Cunha-Vaz JG (1999) Mapping retinal fluorescein leakage with confocal scanning laser fluorometry of the human vitreous. Arch Ophthalmol 117(5):631–637

    PubMed  CAS  Google Scholar 

  62. Lutty GA, McLeod DS, Merges C, Diggs A, Plouet J (1996) Localization of vascular endothelial growth factor in human retina and choroid. Arch Ophthalmol 114(8):971–7

    PubMed  CAS  Google Scholar 

  63. Martin PM, Roon P, Van Ells TK, Ganapathy V, Smith SB (2004) Death of retinal neurons in streptozotocin-induced diabetic mice. Invest Ophthalmol Vis Sci 45(9):3330–6

    PubMed  Google Scholar 

  64. Mizutani M, Kern TS, Lorenzi M (1996) Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest 97(12):2883–90

    PubMed  CAS  Google Scholar 

  65. Mizutani M, Gerhardinger C, Lorenzi M (1998) Muller cell changes in human diabetic retinopathy. Diabetes 47(3):445–9

    PubMed  CAS  Google Scholar 

  66. Mohr S, Xi X, Tang J, Kern TS (2002) Caspase activation in retinas of diabetic and galactosemic mice and diabetic patients. Diabetes 51(4):1172–1179

    PubMed  CAS  Google Scholar 

  67. Mortlock KE, Chiti Z, Drasdo N, Owens DR, North RV (2005) Silent substitution S-cone electroretinogramin subjects with diabetes mellitus. Ophthal Physiol Optics 25(5):392–9

    Google Scholar 

  68. Murata T, Nakagawa K, Khalil A, Ishibashi T, Inomata H, Sueishi K (1996) The relation between expression of vascular endothelial growth factor and breakdown of the blood-retinal barrier in diabetic rat retinas. Lab Invest 74(4):819–25

    PubMed  CAS  Google Scholar 

  69. Newman E, Reichenbach A (1996) The Muller cell: a functional element of the retina. Trends Neurosci 19(8):307–12

    PubMed  CAS  Google Scholar 

  70. Ng EW, Shima DT, Calias P, Cunningham ET, Jr, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nature Rev Drug Discovery 5(2):123–32

    CAS  Google Scholar 

  71. Nitta A, Murai R, Suzuki N, Ito H, Nomoto H, Katoh G, Furukawa Y, Furukawa S (2002) Diabetic neuropathies in brain are induced by deficiency of BDNF. Neurotoxicol Teratol 24(5):695–701

    PubMed  CAS  Google Scholar 

  72. O’Callaghan JP (1991) Assessment of neurotoxicity: use of glial fibrillary acidic protein as a biomarker. Biomed Env Sci 4(1–2):197–206

    CAS  Google Scholar 

  73. Ogata N, Yamanaka R, Yamamoto C, Miyashiro M, Kimoto T, Takahashi K, Maruyama K, Uyama M (1998) Expression of vascular endothelial growth factor and its receptor, KDR, following retinal ischemia-reperfusion injury in the rat. Curr Eye Res 17(11):1087–96

    PubMed  CAS  Google Scholar 

  74. Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, Van Dorpe J, Hellings P, Gorselink M, Heymans S, Theilmeier G, Dewerchin M, Laudenbach V, Vermylen P, Raat H, Acker T, Vleminckx V, Van Den Bosch L, Cashman N, Fujisawa H, Drost MR, Sciot R, Bruyninckx F, Hicklin DJ, Ince C, Gressens P, Lupu F, Plate KH, Robberecht W, Herbert JM, Collen D, Carmeliet P (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genet 28(2):131–8

    PubMed  CAS  Google Scholar 

  75. Osborne NN, Larsen AK (1996) Antigens associated with specific retinal cells are affected by ischaemia caused by raised intraocular pressure: effect of glutamate antagonists. Neurochem Int 29(3):263–70

    PubMed  CAS  Google Scholar 

  76. Pardridge WM, Connor JD, Crawford IL (1975) Permeability changes in the blood-brain barrier: causes and consequences. CRC Crit Rev Toxicol 3(2):159–99

    PubMed  CAS  Google Scholar 

  77. Park SH, Park JW, Park SJ, Kim KY, Chung JW, Chun MH, Oh SJ (2003) Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina. Diabetologia 46(9):1260–8

    PubMed  Google Scholar 

  78. Petito CK (1979) Early and late mechanisms of increased vascular permeability following experimental cerebral infarction. J Neuropathol Exp Neurol 38(3):222–34

    PubMed  CAS  Google Scholar 

  79. Pichiule P, Chavez JC, Xu K, LaManna JC (1999) Vascular endothelial growth factor upregulation in transient global ischemia induced by cardiac arrest and resuscitation in rat brain. Brain Res Mol Brain Res 74(1–2):83–90

    Google Scholar 

  80. Premkumar DR, Cohen DL, Hedera P, Friedland RP, Kalaria RN (1996) Apolipoprotein E-epsilon4 alleles in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer’s disease. Am J Pathol 148(6):2083–95

    PubMed  CAS  Google Scholar 

  81. Qaum T, Xu Q, Joussen AM, Clemens MW, Qin W, Miyamoto K, H Hassessian H, Wiegand SJ, Rudge J, Yancopoulos GD, Adamis AP (2001) VEGF-initiated blood-retinal barrier breakdown in early diabetes. Invest Ophthalmol Vis Sci 42(10):2408–2413

    Google Scholar 

  82. Reichenbach A, Stolzenburg JU, Eberhardt W, Chao TI, Dettmer D, Hertz L (1993) What do retinal Muller (glial) cells do for their neuronal’ small siblings’? J Chem Neuroanat 6(4):201–13

    PubMed  CAS  Google Scholar 

  83. Reiter CE, Gardner TW (2003) Functions of insulin and insulin receptor signaling in retina: possible implications for diabetic retinopathy. Progr Retin Eye Res 22(4):545–62

    CAS  Google Scholar 

  84. Rungger-Brandle E, Dosso AA, Leuenberger PM (2000) Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci 41(7):1971–1980

    PubMed  CAS  Google Scholar 

  85. Saishin Y, Saishin Y, Takahashi K, Lima e Silva R, Hylton D, Rudge JS, Wiegand SJ, Campochiaro PA (2003) VEGF-TRAP(R1R2) suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. J Cell Physiol 195(2):241–8

    Google Scholar 

  86. Scott TM, Foote J, Peat B, Galway G (1986) Vascular and neural changes in the rat optic nerve following induction of diabetes with streptozotocin. J Anat 144:145–152

    PubMed  CAS  Google Scholar 

  87. Seigel GM, Lupien SB, Campbell LM, Ishii DN (2006) Systemic IGF-I treatment inhibits cell death in diabetic rat retina. J Diabetes Complications 20(3):196–204

    PubMed  Google Scholar 

  88. Seki M, Tanaka T, Nawa H, Usui T, Fukuchi T, Ikeda K, Abe H, Takei N (2004) Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats: therapeutic potential of brain-derived neurotrophic factor for dopaminergic amacrine cells. Diabetes 53(9):2412–9

    PubMed  CAS  Google Scholar 

  89. Slevin M, Krupinski J, Slowik A, Rubio F, Szczudlik A, Gaffney J (2000) Activation of MAP kinase (ERK-1/ERK-2), tyrosine kinase and VEGF in the human brain following acute ischaemic stroke. Neuroreport 11(12):2759–64

    PubMed  CAS  Google Scholar 

  90. Sobue K, Yamamoto N, Yoneda K, Hodgson ME, Yamashiro K, Tsuruoka N, Tsuda T, Katsuya H, Miura Y, Asai K, Kato T (1999) Induction of blood-brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res 35(2):155–64

    PubMed  CAS  Google Scholar 

  91. Sokol S, Moskowitz A, Skarf B, Evans R, Molitch M, Senior B (1985) Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol 103(1):51–4

    PubMed  CAS  Google Scholar 

  92. Sondell M, Lundborg G, Kanje M (1999) Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci 19(14):5731–40

    PubMed  CAS  Google Scholar 

  93. Spaide RF, Fisher YL (2006) Intravitreal bevacizumab (Avastin) treatment of proliferative diabetic retinopathy complicated by vitreous hemorrhage. Retina 26(3):275–8

    PubMed  Google Scholar 

  94. Staddon JM, Rubin LL (1996) Cell adhesion, cell junctions and the blood-brain barrier. Curr Opin Neurobiol 6(5):622–7

    PubMed  CAS  Google Scholar 

  95. Stewart PA, Wiley MJ (1981) Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev Biol (Orlando) 84(1):183–92

    CAS  Google Scholar 

  96. Sun FY, Guo X (2005) Molecular and cellular mechanisms of neuroprotection by vascular endothelial growth factor. J Neurosci Res 79(1–2):180–4

    PubMed  CAS  Google Scholar 

  97. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111(12):1843–51

    PubMed  CAS  Google Scholar 

  98. Svensson B, Peters M, Konig HG, Poppe M, Levkau B, Rothermundt M, Arolt V, Kogel D, Prehn JH (2002) Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism. J Cereb Blood Flow Metabol 22(10):1170–5

    CAS  Google Scholar 

  99. Tarkowski E, Issa R, Sjogren M, Wallin A, Blennow K, Tarkowski A, Kumar P (2002) Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer’s disease and vascular dementia. Neurobiol Aging 23(2):237–43

    PubMed  CAS  Google Scholar 

  100. Terada M, Yasuda H, Kikkawa R (1998) Delayed Wallerian degeneration and increased neurofilament phosphorylation in sciatic nerves of rats with streptozocin-induced diabetes. J Neurol Sci 155(1):23–30

    PubMed  CAS  Google Scholar 

  101. Tout S, Chan-Ling T, Hollander H, Stone J (1993) The role of Muller cells in the formation of the blood-retinal barrier. Neuroscience 55(1):291–301

    PubMed  CAS  Google Scholar 

  102. Tran ND, Schreiber SS, Fisher M (1998) Astrocyte regulation of endothelial tissue plasminogen activator in a blood-brain barrier model. J Cereb Blood Flow Metabol 18(12):1316–24

    CAS  Google Scholar 

  103. Trick GL, Burde RM, Gordon MO, Kilo C, Santiago JV (1988) Retinocortical conduction time in diabetics with abnormal pattern reversal electroretinograms and visual evoked potentials. Doc Ophthalmol 70(1):19–28

    PubMed  CAS  Google Scholar 

  104. Tserentsoodol N, Shin BC, Suzuki T, Takata K (1998) Colocalization of tight junction proteins, occludin and ZO-1, and glucose transporter GLUT1 in cells of the blood-ocular barrier in the mouse eye. Histochem Cell Biol 110(6):543–51

    PubMed  CAS  Google Scholar 

  105. Tzekov R, Arden GB (1999) The electroretinogram in diabetic retinopathy. Surv Ophthalmol 44(1):53–60

    PubMed  CAS  Google Scholar 

  106. VanGuilder HD, Ellis RW, Freeman WM, Barber AJ (2006) Streptozotocin-diabetes decreases synaptic protein expression in rat retina. ARVO 2006 Abstract #1733

    Google Scholar 

  107. Vinores SA (1995) Assessment of blood-retinal barrier integrity. Histol Histopathol 10(1):141–54

    PubMed  CAS  Google Scholar 

  108. Vinores SA, Gadegbeku C, Campochiaro PA, Green WR (1989) Immunohistochemical localization of blood-retinal barrier breakdown in human diabetics. Am J Pathol 134(2):231–5

    PubMed  CAS  Google Scholar 

  109. Vinores SA, Campochiaro PA, Lee A, McGehee R, Gadegbeku C, Green WR (1990) Localization of blood-retinal barrier breakdown in human pathologic specimens by immunohistochemical staining for albumin. Lab Invest 62(6):742–50

    PubMed  CAS  Google Scholar 

  110. Vinores SA, McGehee R, Lee A, Gadegbeku C, Campochiaro PA (1990) Ultrastructural localization of blood-retinal barrier breakdown in diabetic and galactosemic rats. J Histochem Cytochem 38(9):1341–52

    PubMed  CAS  Google Scholar 

  111. Vinores SA, Youssri AI, Luna JD, Chen YS, Bhargave S, Vinores MA, Schoenfeld CL, Peng B, Chan CC, LaRochelle W, Green WR, Campochiaro PA (1997) Upregulation of vascular endothelial growth factor in ischemic and nonischemic human and experimental retinal disease. Histol Histopathol 12(1):99–109

    PubMed  CAS  Google Scholar 

  112. Wallow IH, Engerman RL (1977) Permeability and patency of retinal blood vessels in experimental diabetes. Invest Ophthalmol Vis Sci 16(5):447–61

    PubMed  CAS  Google Scholar 

  113. Westergaard E, Go G, Klatzo I, Spatz M (1976) Increased permeability of cerebral vessels to horseradish peroxidase induced by ischemia in Mongolian gerbils. Acta Neuropathol 35(4):307–25

    PubMed  CAS  Google Scholar 

  114. Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB (2002) Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neurosci 22(15):6401–6407

    PubMed  CAS  Google Scholar 

  115. Wisniewski HM, Kozlowski PB (1982) Evidence for blood-brain barrier changes in senile dementia of the Alzheimer type (SDAT). Ann N Y Acad Sci 396:119–29

    PubMed  CAS  Google Scholar 

  116. Wolter JR (1961) Diabetic retinopathy. Am J Ophthalmol 51:1123–1139

    PubMed  CAS  Google Scholar 

  117. Xu Q, Qaum T, Adamis AP (2001) Sensitive blood-retinal barrier breakdown quantitation using Evans blue. Invest Ophthalmol Vis Sci 42(3):789–94

    PubMed  CAS  Google Scholar 

  118. Yang ZJ, Bao WL, Qiu MH, Zhang LM, Lu SD, Huang YL, Sun FY (2002) Role of vascular endothelial growth factor in neuronal DNA damage and repair in rat brain following a transient cerebral ischemia. J Neurosci Res 70(2):140–9

    PubMed  CAS  Google Scholar 

  119. Yang SP, Bae DG, Kang HJ, Gwag BJ, Gho YS, Chae CB (2004) Co-accumulation of vascular endothelial growth factor with beta-amyloid in the brain of patients with Alzheimer’s disease. Neurobiol Aging 25(3):283–90

    PubMed  Google Scholar 

  120. Yoshioka M, Kayo T, Ikeda T, Koizumi A (1997) A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46(5):887–94

    PubMed  CAS  Google Scholar 

  121. Zeng XX, Ng YK, Ling EA (2000) Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Vis Neurosci 17(3):463–471

    PubMed  CAS  Google Scholar 

  122. Zhang L, Inoue M, Dong K, Yamamoto M (1998) Alterations in retrograde axonal transport in optic nerve of type I and type II diabetic rats. Kobe J Med Sci 44(5–6):205–15

    Google Scholar 

  123. Zhang LX, Ino-ue M, Dong K, Yamamoto M (2000) Retrograde axonal transport impairment of large-and medium-sized retinal ganglion cells in diabetic rat. Curr Eye Res 20(2):131–136

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barber, A.J., Van Guilder, H.D., Gastinger, M.J. (2007). The Neuronal Influence on Retinal Vascular Pathology. In: Joussen, A.M., Gardner, T.W., Kirchhof, B., Ryan, S.J. (eds) Retinal Vascular Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29542-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-29542-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29541-9

  • Online ISBN: 978-3-540-29542-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics