Skip to main content

Regulators

  • Reference work entry

Abstract

The ζ-function is one of the most deep and mysterious objects in mathematics. During the last two centuries it has served as a key source of new ideas and concepts in arithmetic algebraic geometry. The ζ-function seems to be created to guide mathematicians into the right directions. To illustrate this, let me recall three themes in the 20th century mathematics which emerged from the study of the most basic properties of ζ-functions: their zeros, analytic properties and special values.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beilinson A.A.: Higher regulators and values of L -functions, VINITI, 24 (1984), 181–238.

    MathSciNet  Google Scholar 

  2. Beilinson A.A.: Height pairing between algebraic cycles, Springer Lect. Notes in Math. 1289, 1–25.

    Google Scholar 

  3. Beilinson A.A.: Notes on absolute Hodge cohomology. Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), 35–68, Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986.

    Google Scholar 

  4. Beilinson A.A., Deligne P.: Interprétation motivique de la conjecture de Zagier reliant polylogarithmes et régulateurs, Motives (Seattle, WA, 1991), 97–121, Proc. Sympos. Pure Math., 55, Part 2, Amer. Math. Soc., Providence, RI, 1994.

    Google Scholar 

  5. Beilinson A.A., Deligne P.: Polylogarithms, Manuscript, 1992.

    Google Scholar 

  6. Beilinson A.A., MacPherson R., Schechtman V.V.: Notes on motivic cohomology, Duke Math. J. 54 (1987), 679–710.

    Article  MATH  MathSciNet  Google Scholar 

  7. Beilinson A.A., Goncharov A.A., Schechtman V.V., Varchenko A.N.: Aomoto dilogarithms, mixed Hodge structures and motivic cohomology, The Grothendieck Festschrift, Birkhauser, vol 86, 1990, p. 135–171.

    Google Scholar 

  8. Bloch S.: Algebraic cycles and higher K -theory, Adv. in Math., (1986), v. 61, 267–304.

    Article  MATH  MathSciNet  Google Scholar 

  9. Bloch S.: The moving lemma for higher Chow groups, J. Alg. geometry. 3 (1994), 537–568.

    MATH  MathSciNet  Google Scholar 

  10. Bloch S.: Algebraic cycles and the Beilinson conjectures, Cont. Math. 58 (1986) no 1, 65–79.

    Google Scholar 

  11. Bloch S.:Higher regulators, algebraic K -theory and zeta functions of elliptic curves, Irvines lectures, CRM Monograph series, vol. 11, 2000.

    Google Scholar 

  12. Bloch S.: Applications of the dilogarithm function in algebraic K -theory and algebraic geometry, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), pp. 103–114.

    Google Scholar 

  13. Bloch S., Kato K.: L -functions and Tamagawa numbers of motives, In: The Grothendieck Festschrift, Birkhaüser, vol 86, 1990.

    Google Scholar 

  14. Bloch S., Kriz I.: Mixed Tate motives, Ann. Math. 140 (1994), 557–605.

    Article  MATH  MathSciNet  Google Scholar 

  15. Borel A.: Stable real cohomology of arithmetic groups, Ann. Sci. Ec. Norm. Super., (4) 7 (1974), 235–272.

    MATH  MathSciNet  Google Scholar 

  16. Borel A.: Cohomologie de SLn et valeurs de fonctions zêta aux point sentiers, Ann. Sc. Norm. Sup. Pisa 4 (1977), 613–636.

    MATH  MathSciNet  Google Scholar 

  17. Burgos J.I.: Arithmetic Chow rings and Deligne–Beilinson cohomology, J. Algebraic Geom. 6 (1997), no. 2, 335–377.

    MATH  MathSciNet  Google Scholar 

  18. Deligne P.: Valeurs de fonctions L et periodes d’integrales, In: AMS Proc. Symp. Pure Math., vol. 33, part 2, (1979). 313–346.

    Google Scholar 

  19. Deligne P.: Le groupe fundamental de la droit projective moins trois points, In: Galois groups over Q, MSRI Publ. 16, 79–313, Springer-Verlag, 1989. .

    Google Scholar 

  20. Deligne P., Goncharov A.: Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. Ecole Norm. Sup., To appear. arXive: math.NT/0302267.

    Google Scholar 

  21. Deninger Ch.: Higher order operatons in Deligne cohomology, Inventiones Math. 122, N1 (1995) 289–316.

    Article  MathSciNet  Google Scholar 

  22. Dupont J.: Simplicial De Rham cohomolgy and characteristic classes of flat bundles, Topology 15, 1976, p. 233–245.

    Article  MATH  MathSciNet  Google Scholar 

  23. Gabrielov A., Gelfand I.M., Losik M.: Combinatorial computation of characteristic classes, I, II, Funct. Anal. i ego pril. 9 (1975) 12–28, ibid 9 (1975) 5–26.

    Google Scholar 

  24. Gangl H., Zagier D.: Classical and elliptic polylogarithms and special values of L -series, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), 561–615, NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000.

    Google Scholar 

  25. Gelfand I.M., MacPherson R.: Geometry in Grassmannians and a generalisation of the dilogarithm, Adv. in Math., 44 (1982) 279–312.

    Article  MATH  MathSciNet  Google Scholar 

  26. Gillet H.; Soulé, Ch.: Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. No. 72, (1990), 93–174 (1991).

    Google Scholar 

  27. Goncharov A.B.: Geometry of configurations, polylogarithms and motivic cohomology, Adv. in Math., 114, (1995), 197–318.

    Article  MATH  MathSciNet  Google Scholar 

  28. Goncharov A.B.: Polylogarithms and motivic Galois groups, in Symp. in Pure Math., v. 55, part 2, 1994, 43–97.

    Google Scholar 

  29. Goncharov A.B.: Deninger’s conjecture on special values of L -functions of elliptic curves at s = 3, J. Math. Sci. 81 (1996), N3, 2631–2656, alggeom/9512016.

    Article  MATH  MathSciNet  Google Scholar 

  30. Goncharov A.B.: Chow polylogarithms and regulators, Math. Res. Letters, 2, (1995), 99–114.

    Google Scholar 

  31. Goncharov A.B.: Geometry of trilogarithm and the motivic Lie algebra of a field, Proceedings of the conference “Regulators in arithmetic and geometry”, Progress in Mathematics, vol 171, Birkhäuser (2000), 127–165. math.AG/0011168.

    Google Scholar 

  32. Goncharov A.B.: Explicit regulator maps on the polylogarithmic motivic complexes, In: “Motives, polylogarithms and Hodge theory”. Part I, F. Bogomolov, L. Katzarkov editors. International Press. 245–276. math.AG/0003086.

    Google Scholar 

  33. Goncharov A.B.: Polylogarithms, regulators, and Arakelov motivic complexes, To appear in JAMS, 2005, math.AG/0207036.

    Google Scholar 

  34. Goncharov A.B.: Polylogarithms in arithmetic and geometry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zurich, 1994), 374–387, Birkhauser, Basel, 1995.

    Google Scholar 

  35. Goncharov A.B.: Periods and mixed motives, Preprint math.AG/0202154.

    Google Scholar 

  36. Goncharov A.B.: Multiple zeta-values, Galois groups, and geometry of modular varieties, European Congress of Mathematics, Vol. I (Barcelona, 2000), 361–392, Progr. Math., 201, Birkhauser, Basel, 2001. math.AG/0005069.

    Google Scholar 

  37. Goncharov A.B.: Mixed elliptic motives. Galois representations in arithmetic algebraic geometry (Durham, 1996), 147–221, London Math. Soc. Lecture Note Ser., 254, Cambridge Univ. Press, Cambridge, 1998.

    Google Scholar 

  38. Goncharov A.B.: Galois symmetries of fundamental groupoids and noncommutative geometry, To appear in Duke Math. Journal, 2005, math.AG/0208144.

    Google Scholar 

  39. Goncharov A.B., Levin A.M.: Zagier’s conjecture on L(E, 2). Invent. Math. 132 (1998), no. 2, 393–432.

    Article  MATH  MathSciNet  Google Scholar 

  40. Goncharov A.B.; Manin, Yu I. Multiple ζ -motives and moduli spaces M0,n. Compos. Math. 140 (2004), no. 1, 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  41. Goncharov A.B., Zhao J.: The Grassmannian trilogarithms, Compositio Math. 127 (2001), no. 1, 83–108. math.AG/0011165.

    Article  MATH  MathSciNet  Google Scholar 

  42. Hain R., MacPherson R.: Higher Logarithms, Ill. J. of Math,, vol. 34, (1990) N2, 392–475.

    MATH  MathSciNet  Google Scholar 

  43. Huber A., Wildeshaus J. Classical motivic polylogarithms according to Beilinson and Deligne, Doc. Math. 3 (1998), 27–133 (electronic).

    MATH  MathSciNet  Google Scholar 

  44. de Jeu, Rob: On K(3) 4 of curves over number fields, Invent. Math. 125 (1996), N3, 523–556.

    Article  MATH  MathSciNet  Google Scholar 

  45. de Jeu, Rob: Towards the regulator formulas for curves over number fields, Compositio Math. 124 (2000), no. 2, 137–194.

    Article  MATH  MathSciNet  Google Scholar 

  46. de Jeu, Rob: Zagier’s conjecture and wedge complexes in algebraic K -theory, Comp. Math., 96, N2, (1995), 197–247.

    MATH  Google Scholar 

  47. Hanamura M.: Mixed motives and algebraic cycles, I. Math. Res. Lett. 2 (1995), no. 6, 811–821.

    MATH  MathSciNet  Google Scholar 

  48. Hanamura M., MacPherson R.: Geometric construction of polylogarithms, Duke Math. J. 70 (1993) 481–516.

    Article  MATH  MathSciNet  Google Scholar 

  49. Hanamura M., MacPherson R.: Geometric construction of polylogarithms, II, Progress in Math. vol. 132 (1996) 215–282.

    MathSciNet  Google Scholar 

  50. Levin A.M.: Notes on R-Hodge–Tate sheaves, Preprint MPI 2001.

    Google Scholar 

  51. Levine M.: Mixed motives, Mathematical Surveys and Monographs, 57. American Mathematical Society, Providence, RI, 1998

    MATH  Google Scholar 

  52. Lichtenbaum S.: Values of zeta functions, étale cohomology, and algebraic K -theory, in Algebraic K-theory II, Springer LNM, 342, 1973, 489–501.

    Google Scholar 

  53. Lichtenbaum S.: Values of zeta functions at non-negative integers, Lect. Notes in Math., 1068, Springer-Verlag, 1984, 127–138.

    Google Scholar 

  54. Mazur B., Wiles A.: Class fields of abelian extensions of Q, Invent. Math. 76 (1984), no. 2, 179–330.

    Article  MATH  MathSciNet  Google Scholar 

  55. Milnor J.: Introduction to algebraic K-theory. Princeton Univ. Press. 1971.

    Google Scholar 

  56. Nekovář J.: Beilinson’s conjectures. Motives (Seattle, WA, 1991), 537–570, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994.

    Google Scholar 

  57. Rapoport M., Schappacher N. Schneider P.: Beilinson’s conjectures on special values of L-functions. Perspectives in Mathematics, 4. Academic Press, Inc., Boston, MA, 1988.

    Google Scholar 

  58. Ramakrishnan D.: Regulators, algebraic cycles, and values of L -functions. Algebraic K-theory and algebraic number theory (Honolulu, HI, 1987), 183–310, Contemp. Math., 83, Amer. Math. Soc., Providence, RI, 1989.

    Google Scholar 

  59. Soule C., Abramovich D., Burnol J.F., Kramer J.K.: Lectures on Arakelov geometry. Cambridge University Press, 1992.

    Google Scholar 

  60. Scholl A.: Integral elements in K -theory and products of modular curves. The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), 467–489, NATO Sci. Ser. C Math. Phys. Sci., 548.

    Google Scholar 

  61. Suslin A.A.: K3 of the field and Bloch’s group, Proc. of the Steklov Institute of Math., 1991, issue 4, 217–240.

    Google Scholar 

  62. Tate J.: Symbols in arithmetics Actes du Congrés Int. Math. vol. 1, Paris, 1971, 201–211.

    Google Scholar 

  63. Voevodsky V.: Triangulated category of motives over a field, in Cycles, transfers, and motivic homology theories. Annals of Mathematics Studies, 143. Princeton University Press, Princeton, NJ, 2000.

    Google Scholar 

  64. Wang Q.: Construction of the motivic multiple polylogarithms, Ph. D. thesis, Brown University, April 2004.

    Google Scholar 

  65. Wiles A.: The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), no. 3, 493–540.

    Article  MathSciNet  Google Scholar 

  66. Wildeshaus J.: On an elliptic analogue of Zagier’s conjecture, Duke Math. J. 87 (1997), no. 2, 355–407.

    Article  MATH  MathSciNet  Google Scholar 

  67. Zagier D.: Polylogarithms, Dedekind zeta functions and the algebraic K -theory of fields, Arithmetic Algebraic Geometry (G. v.d. Geer, F. Oort, J. Steenbrink, eds.), Prog. Math., Vol 89, Birkhauser, Boston, 1991, pp. 391–430.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Goncharov, A. (2005). Regulators. In: Friedlander, E., Grayson, D. (eds) Handbook of K-Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27855-9_8

Download citation

Publish with us

Policies and ethics