Skip to main content

Diffusion in Some Perovskites: HTSC Cuprates and a Piezoelectric Ceramic

  • Chapter
Diffusion Processes in Advanced Technological Materials
  • 2588 Accesses

Abstract

Understanding of diffusion processes in perovskites, represented by the high-temperature superconducting (HTSC) cuprates and a piezoelectric ceramic, of all the constituent elements as well as of some foreign atomic species, is important for scientific as well as technological reasons. Self-diffusion of various cations and anion species in these compounds is a basic material property; it has an impact on the superconducting properties of the former and the physical response of the latter to electrical, mechanical, and thermal fields. The interplay of diffusion with the microstructures ultimately controls the reliability of the devices in actual applications. One good example is the control of twin-density and grain refinements accomplished recently through cation doping, which in some cases alleviates the flux-pinning problem in the matrix.[1] There are many situations in which cation diffusion manifests itself in the fabrication of HTSC elements. In the bulk production of tapes and wires produced by the oxide-powder-in-tube (OPIT) method, for example, silver sheath is typically used and the composite is subjected to severe thermomechanical deformation.[2] In such a fabrication process, silver sheath may partially dissolve in the fabrication process and reach the oxide core by diffusion, thereby reducing the current-carrying capacity of the connectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. L. Shinde and T. M. Shaw, in Superconductivity and Ceramic Superconductors (K. M. Nair and E. A. Giess, eds.), Ceramics Trans., 3:579 (1990)

    Google Scholar 

  2. K. H. Sandhage, G. N. Riley, Jr., and W. L. Carter, J. Metals, 43(3):21 (1991)

    Google Scholar 

  3. G. Xiao, M. Z. Cieplak, A. Gavrin, F. H. Streitz, A. Bakhshai, and C. L. Chien, Phys. Rev. Lett., 60:1446 (1988)

    Article  Google Scholar 

  4. D. Jorgensen, H. Shaked, D. G. Hinks, B. Dabrowski, B. N. Veal, A. P. Paulikas, L. J. Nowicki, G. W. Crabtree, W. L. Kwok, L. H. Nunez, and H. Claus, Phys. C, 153–155:578 (1988)

    Article  Google Scholar 

  5. D. Gupta, Metals Mater. Proc., 11:233 (1999)

    Google Scholar 

  6. D. Gupta, R. B. Laibowitz, and J. A. Lacey, Phys. Rev. Lett., 64:2675 (1990)

    Article  Google Scholar 

  7. D. Gupta, S. L. Shinde, and R. B. Laibowitz, in High Temperature Superconducting Compounds, vol. II (S. H. Wang, A. Dasgupta, and R. Laibowitz, eds.), Minerals, Metals and Materials Society, Warrendale, PA (1990), p. 377

    Google Scholar 

  8. J. L. Routbort, S. J. Rothman, N. Chen, and J. N. Mundy, Phys. Rev., B43:5489 (1991)

    Article  Google Scholar 

  9. N. Chen, S. J. Rothman, and J. L. Routbort, J. Mater. Res. 7:1 (1992)

    Article  Google Scholar 

  10. D. J. Lewis, D. Gupta, M. R. Notis, and Y. Imanaka, J. Am. Ceram Soc., 84(8):1777 (2001)

    Google Scholar 

  11. S. J. Rothman, in Diffusion in Crystalline Solids (G. E. Murch and A. S. Nowick, eds.), Academic Press (1984)

    Google Scholar 

  12. P. Chaudhari, R. H. Koch, R. B. Laibowitz, T. R. McGuire, and R. J. Gambino, Phys. Rev Lett., 58:2684 (1987)

    Article  Google Scholar 

  13. F. LeGoues, Philos. Mag., 57:167 (1988)

    Article  Google Scholar 

  14. H. Nakajima, S. Yamaguchi, K. Iwasaki,. Morita, and H. Fujimori, Appl. Phys. Lett., 1437 (1988)

    Google Scholar 

  15. P. Madakson, J. J. Cuomo, D. S. Yee, R. A. Roy, and G. Scilla, J. Appl. Phys., 63:2046 (1988)

    Article  Google Scholar 

  16. D. Gupta, J. A. Lacey, and R. B. Laibowitz, Defect Diffusion Forum, 75:79 (1991)

    Article  Google Scholar 

  17. F. Wenwer, A. Gude, G. Rummel, M. Eggermann, T. Zumskley, N. A. Stolwijk, and H. Mehrer, Meas. Sei. Technol., 7:632 (1996)

    Article  Google Scholar 

  18. D. Gupta, Thin Solid Films, 25:231 (1975)

    Article  Google Scholar 

  19. J. D. Jorgenson, M. A. Beno, D. G. Honks, L. Soderham, K. L. Volin, R. L. Hitterman, J. D. Grace, I. K. Schuller, C. U. Segre, K. Zhang, and M. S. Kleefisch, Phys. Rev, B36:3608 (1987)

    Article  Google Scholar 

  20. S. J. Rothman and N. L. Peterson, Phys. Status Solidi, 35:305 (1969)

    Article  Google Scholar 

  21. N. L. Peterson, Mater. Sei. Forum, 1:85 (1984)

    Article  Google Scholar 

  22. P. Shewmon, Diffusion in Solids, 2nd ed., Minerals, Metals and Materials Society, Warrendale, PA (1989), p. 79

    Google Scholar 

  23. H. Shaked, J. Faber, Jr., B. W. Veal, R. L. Hitterman, and P. Paulikas, Solid State Comm., 75:445 (1990)

    Article  Google Scholar 

  24. R. S. Howland, T. H. Giballe, S. S. Laderman, A. F. Corbie, M. Scott, J. M. Tarascon, and P. Barboux, Phys. Rev., B39:9017 (1989)

    Article  Google Scholar 

  25. Y. H. Kao, Y. D. Yao, L. Y. Jang, F. Xu, A. Krol, L. W. Song, C. J. Sher, A. Darowsky, J. C. Phillips, J. J. Simmins, and R. L. Snyder, J. Appl. Phys., 67:353 (1990)

    Article  Google Scholar 

  26. R. Beyers and T. M. Shaw, Solid State Phys., 42:135 (1989)

    Article  Google Scholar 

  27. A. L. Robinson, Science, 236:1063 (1987)

    Article  Google Scholar 

  28. J. L. Routbort and S. J. Rothman, J. Appl. Phys., 76:5615 (1994)

    Article  Google Scholar 

  29. H. Bakker, D. M. R. LoCasio, J. P. A. Westerveld, A. T. Gomperets, and M. T. van Wees, Defect Diffusion Forum, 75:19 (1991)

    Article  Google Scholar 

  30. J. L. Routbort, N. Chen, K. C. Goretta, and S. J. Rothman, High Temperature Superconductors: Materials Aspects (H. C. Freyhardt, R. Fliikiger, and M. Peuckert, eds.), Deutche Gesellschaftfür Materialkunde (1991), pp. 569–580

    Google Scholar 

  31. S. J. Rothman, J. L. Routbort, and J. E. Baker, Phys. Rev., B40:8852 (1989)

    Article  Google Scholar 

  32. K. N. Tu, N. C. Yeh, S. I. Park, and C. C. Tsuei, Phys. Rev., B39:304 (1989)

    Article  Google Scholar 

  33. E. J. Opila, H. L. Tuller, B. J. Wuensch, and J. J. Mauer, J. Amer. Ceram. Soc, 76:2363 (1993)

    Article  Google Scholar 

  34. J. L. Routbort, S. J. Rothman, B. K. Flandermeyer, L. J. Mowicki, and J. E. Baker, J. Mater. Soc., 3:16 (1988)

    Google Scholar 

  35. D. Gupta, in Proc DIMAT-92 Symposium (Kyoto, Japan) (M. Koiwa, ed.), Defect Diffusion Forum, 95–98:1111 (1993)

    Google Scholar 

  36. J. L. Routbort, S. J. Rothman, J. N. Mundy, J. E. Baker, B. Dabrawski, and R. K. Williams, Phys. Rev., B48:7505 (1993)

    Article  Google Scholar 

  37. M. Runde, J. L. Routbort, S. J. Rothman, K. C. Coretta, J. N. Mundy, X. Xu, and J. E. Baker, Phys. Rev., B45:7375 (1992)

    Article  Google Scholar 

  38. M. Runde, J. L. Routbort, J. N. Mundy, S. J. Rothman, C. L. Wiley, and X. Xu, Phys. Rev., B46:3142 (1992)

    Article  Google Scholar 

  39. X. Zhang and C. R. A. Catlow, Phys. Rev., B46:457 (1992)

    Article  Google Scholar 

  40. P. Chaudhari, J. Mannart, D. Dimos, C. C. Tsui, J. Chi, M. Oprysko, and M. Scheuermann, Phys. Rev. Lett., 60:1653(1988)

    Article  Google Scholar 

  41. P. Chaudhari, C. A. Mueller, and H. P. Wolf, U.S. Patent No. 5401714, March 28, 1995

    Google Scholar 

  42. G. Hammerl, A. Schmehl, R. R. Schultz, B. Goetz, H. Bichefeldt, C. W. Schneider, H. Hilgenkamp, and J. Mannart, Nature, 407:162 (2000)

    Article  Google Scholar 

  43. C. H. Cheng and Y. Zhao, J. Appl. Phys., 93:2292 (2003)

    Article  Google Scholar 

  44. H. Hilgenkamp and J. Mannhart, Rev. Mod. Phys., 74:485 (2002)

    Article  Google Scholar 

  45. A. V. Berenov, R. Marriot, S. R. Foltyn, and J. L. MacManus-Driscoll, IEEE Trans. Appl. Superconductivity, 11:1051 (2001)

    Article  Google Scholar 

  46. G. S. Kulikov, R. S. Malkovich, E. A. Skoryatina, V. P. Usacheva, T. A. Shaplytina, S. F. Gafarov, and T. D. Dzhafarov, Ferroelectrics, 144:61 (1993)

    Google Scholar 

  47. T. Suzuoka, Jpn Inst. Metall., 2:25 (1961)

    Google Scholar 

  48. R. T. P. Whipple, Philos. Mag., 45:1225 (1954)

    Google Scholar 

  49. D. Gupta, “Grain boundary diffusion in YBa2Cu307−x superconductor,” unpublished

    Google Scholar 

  50. J. Sabras, G. Perudeau, R. Berjoan, and C. Monty, J. Less-Common Met., 164/165:239 (1990)

    Article  Google Scholar 

  51. J. Sabra, C. Dolin, J. Ayasche, C. Monty, R. Maury, and A. Fert, Colloq. Phys. C1, suppl. No.1, tome 51, 1035 (1990)

    Google Scholar 

  52. J. Claus, G. Borchardt, S. Weber, and S. Scherrer Z. Phys. Chem., 206:49 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 William Andrew, Inc.

About this chapter

Cite this chapter

Gupta, D. (2005). Diffusion in Some Perovskites: HTSC Cuprates and a Piezoelectric Ceramic. In: Gupta, D. (eds) Diffusion Processes in Advanced Technological Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27470-4_10

Download citation

Publish with us

Policies and ethics