Skip to main content

Surface Contact and Reaction Force Models for Laparoscopic Simulation

  • Conference paper
Medical Simulation (ISMS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3078))

Included in the following conference series:

Abstract

In surgery simulation, most existing methods assume that the contact between a virtual instrument and a soft tissue model occur at a single point. However, there is a gross approximation when simulating laparoscopic procedures since the instrument shaft is used in several surgical tasks. In this paper, we propose a new algorithm for modeling the collision response of a soft tissue when interacting with a volumetric virtual instrument involving both the shaft and the tip of the instrument. The proposed method generates visually coherent mesh deformations and plausible force-feedback in a real-time surgical simulator even when the mesh geometry is irregular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mendoza, C., Sundaraj, K., Laugier, C.: Faithfull Force Feedback in Medical Simulators. In: International Symposium in Experimental Robotics. Experimental Robotics of Tracts in Advanced Robotics, vol. VIII, Springer, Italy (2002)

    Google Scholar 

  2. Ho, C.H., Basdogan, C., Srinivasan, M.: Ray based haptic rendering: Force and torque interactions between a line probe and 3d objects in virtual environments. International Journal of Robotics Research 19, 668–683 (2000)

    Article  Google Scholar 

  3. Basdogan, C., Ho, C.H., Srinivasan, M.A.: Virtual environments for medical training: Graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Transactions on Mechatronics 6, 269–285 (2001)

    Article  Google Scholar 

  4. Picinbono, G., et al.: Improving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force extrapolation. Journal of Visualisation and Computer Animation 13, 147–167 (2001)

    Article  Google Scholar 

  5. Forest, C., Delingette, H., Ayache, N.: Cutting simulation of manifold volumetric meshes. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 235–244. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Lombardo, J.C., Cani, M., Neyret, F.: Real-time collision detection for virtual surgery. In: Computer Animation, Geneva Switzerland (1999)

    Google Scholar 

  7. Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Transactions On Visualization and Computer Graphics 5, 62–73 (1999)

    Article  Google Scholar 

  8. Witkin, A., Baraff, D., Kass, M.: An introduction to physically based modeling. In: SIGGRAPH 1994, Course Notes, Course No. 32 (1994)

    Google Scholar 

  9. Deguet, A., Joukhadar, A., Laugier, C.: Models and algorithms for the collision of rigid and deformable bodies. In: Robotics: the algorithmic perspective, pp. 327–338. AK Peters, Wellesley (1998)

    Google Scholar 

  10. Bridson, R., Fedkiw, R., Anderson, J.: Robust treatment of collisions, contact and friction for cloth animation. In: 29th annual conference on Computer graphics and interactive techniques, pp. 594–603. ACM Press, New York (2002)

    Google Scholar 

  11. Zilles, C.B., Salisbury, J.K.: A constraint-based god-object method for haptic display. In: International Conference on Intelligent Robots and Systems, Pittsburgh, Pennsylvania, vol. 3, pp. 146–151 (1995)

    Google Scholar 

  12. Schömer, E., Christian, T.: Efficient collision detection for moving polyhedra. In: Proc. of the Eleventh Annual Symp. on Computational Geometry, pp. 51–60 (1995)

    Google Scholar 

  13. Mahvash, M., Hayward, V.: Haptic simulation of a tool in contact with a nonlinear deformable body. In: Ayache, N., Delingette, H. (eds.) IS4TM 2003. LNCS, vol. 2673, pp. 311–320. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Ellis, R.E., Ismaeil, O.M., Lipsett, M.: Design and evaluation of a high-performance haptic interface. Robotica 14, 321–327 (1997)

    Article  Google Scholar 

  15. Balaniuk, R.: Using fast local modeling to buffer haptic data. In: Proceeding of the 4th PhantoM User Group Workshop (PUG 1999), Cambridge, pp. 7–11 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Forest, C., Delingette, H., Ayache, N. (2004). Surface Contact and Reaction Force Models for Laparoscopic Simulation. In: Cotin, S., Metaxas, D. (eds) Medical Simulation. ISMS 2004. Lecture Notes in Computer Science, vol 3078. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25968-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25968-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22186-9

  • Online ISBN: 978-3-540-25968-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics