Skip to main content

On Extended Finite Element Method (XFEM) for Modelling of Organ Deformations Associated with Surgical Cuts

  • Conference paper
Medical Simulation (ISMS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3078))

Included in the following conference series:

Abstract

The Extended Finite Element Method (XFEM) is a technique used in fracture mechanics to predict how objects deform as cracks form and propagate through them. Here, we propose the use of XFEM to model the deformations resulting from cutting through organ tissues. We show that XFEM has the potential for being the technique of choice for modelling tissue retraction and resection during surgery. Candidates applications are surgical simulators and image-guided surgery. A key feature of XFEM is that material discontinuities through FEM meshes can be handled without mesh adaptation or remeshing, as would be required in regular FEM. As a preliminary illustration, we show the result of XFEM calculation for a simple 2D shape in which a linear cut was made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balakrishnam, A., Kacher, D.F., Slocum, A., Kemper, C., Warfield, S.K.: Smart retractor for use in image guided neurosurgery. In: 2003 Summer Bioengineering Conference, Sonesta Beach Resort in Key Biscayne, Florida, June 25-29 (2003)

    Google Scholar 

  2. Bielser, D., Gross, M.H.: Interactive simulation of surgical cuts. In: Pacific Graphics 2000 IEEE Computer Society Press (ed.) Proceedings of Pacific Graphics 2000, Hong Kong, China, October 2-5, pp. 116–125 (2000)

    Google Scholar 

  3. Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. The Visual Computer 16(8), 437–452 (2000)

    Article  MATH  Google Scholar 

  4. Dolbow, J.E.: An Extended Finite Element Method with Discontinuous Enrichment for Applied Mechanics, PhD Dissertation, Northwestern University (1999)

    Google Scholar 

  5. Ferrant, M.: Physics-based Deformable Modeling of Volumes and Surfaces for Medical Image Registration, Segmentation and Visualization. PhD thesis, Uni-versité catholique of Louvain, Telecommunications Laboratory, Louvain-la-Neuve, Belgium (April 2001)

    Google Scholar 

  6. Ferrant, G.M., Nabavi, A., Macq, B., Jolesz, F.A., Kikinis, R., Warfield, S.K.: Registration of 3D intraoperative MR images of the brain using a finite element biomechanical model. IEEE Trans. Medical Imaging 20(12), 1384–1397 (2001)

    Article  Google Scholar 

  7. Ferrant, M., Nabavi, A., Macq, B., Kikinis, R., Warfield, S.: Serial registration of intra-operative MR images of the brain. Medical Image Analysis 6, 337–359 (2002)

    Article  Google Scholar 

  8. Forest, C., Delingette, H., Ayache, N.: Cutting simulation of manifold volumetric meshes. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 235–244. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Ganovelli, F., Cignoni, P., Montani, C., Scopigno, R.: A multiresolution model for soft objects supporting interactive cuts and lacerations. Computer Graphics Forum 19(3), 271–282 (2000)

    Article  Google Scholar 

  10. Lamprich, B.K., Miga, M.I.: Analysis of model-updated MR images to correct for brain deformation due to tissue retraction. In: Medical Imaging 2003: Visualization, Image-guided Procedures and Display: Proc. of the SPIE, vol. 5029, pp. 552–560 (2003)

    Google Scholar 

  11. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 46, 131–150 (1999)

    Article  MATH  Google Scholar 

  12. Mor, A., Kanade, T.: Modifying soft tissue models: Progressive cutting with minimal new element creation. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 598–607. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Nieuhuys, H.-W.: Cutting in deformable objects. PhD thesis, Institute for Information and Computing Sciences, Utrecht University (2003)

    Google Scholar 

  14. Nienhuys, H.-W., van der Stappen, A.F.: A surgery simulation supporting cuts and finite element deformation. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 153–160. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Serby, D., Harders, M., Székely, G.: A new approach to cutting into finite element models. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 425–433. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Sukumar, N., Moës, N., Belytschko, T., Moran, B.: Extended Finite Element Method for three-dimensional crack modelling. International Journal for Numerical Methods in Engineering 48(11), 1549–1570 (2000)

    Article  MATH  Google Scholar 

  17. Sukumar, N., Prévost, J.-H.: Modeling Quasi-Static Crack Growth with the Extended Finite Element Method. Part I: Computer Implementation. International Journal of Sohds and Structures 40(26), 7513–7537 (2003)

    Article  MATH  Google Scholar 

  18. Verly, J.G., Vigneron, L., Petitjean, N., Martin, C., Guran, R., Robe, P.: 3D nonrigid registration and multimodality fusion for image-guided neurosurgery. In: Fusion 2003, Proceedings of the 6th International Conference on Information Fusion, Cairns, Australia (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vigneron, L.M., Verly, J.G., Warfield, S.K. (2004). On Extended Finite Element Method (XFEM) for Modelling of Organ Deformations Associated with Surgical Cuts. In: Cotin, S., Metaxas, D. (eds) Medical Simulation. ISMS 2004. Lecture Notes in Computer Science, vol 3078. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25968-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25968-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22186-9

  • Online ISBN: 978-3-540-25968-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics