Skip to main content

Multiple Precision Interval Packages: Comparing Different Approaches

  • Conference paper
Numerical Software with Result Verification

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2991))

Abstract

We give a survey on packages for multiple precision interval arithmetic, with the main focus on three specific packages. One is a Maple package, intpakX, and two are C/C++ libraries, GMP-XSC and MPFI. We discuss their different features, present timing results and show several applications from various fields, where high precision intervals are fundamental.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maple PowerTool Interval Arithmetic, http://www.mapleapps.com/powertools/interval/Interval.shtml

  2. GMP, GNU Multiple Precision library, http://www.swox.com/gmp/

  3. XSC Languages, http://www.math.uni-wuppertal.de/wrswt/xsc-sprachen.html

  4. Aberth, O., Schaefer, M.J.: Precise computation using range arithmetic, via C++. ACM TOMS 18(4), 481–491 (1992)

    Article  MATH  Google Scholar 

  5. Aberth, O.: Precise numerical methods using C++. Academic Press, New York (1998)

    Google Scholar 

  6. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. National Bureau of Standards (1964)

    Google Scholar 

  7. Akyildiz, Y., Popova, E.D., Ullrich, C.P.: Towards a more complete interval arithmetic in Mathematica. In: Proceedings of the Second International Mathematica Symposium, pp. 29–36 (1997)

    Google Scholar 

  8. Brass, H.: Quadraturverfahren. Vandenhoeck & Ruprecht, Göttingen (1977)

    Google Scholar 

  9. Brass, H., Förster, K.-J.: On the application of the Peano representation of linear functionals in numerical analysis. In: Recent progress in inequalities. Niš, 1996, Math. Appl, vol. 430, pp. 175–202. Kluwer Acad. Publ., Dordrecht (1998)

    Google Scholar 

  10. Brent, R.P.: A Fortran multiple-precision arithmetic package. ACM TOMS 4, 57–70 (1978)

    Article  Google Scholar 

  11. Connell, A.E., Corless, R.M.: An experimental interval arithmetic package in Maple. In: Num. Analysis with Automatic Result Verification (1993)

    Google Scholar 

  12. Corliss, G.: Intpak for Interval Arithmetic in Maple. Journal of Symbolic Computation 11 (1994)

    Google Scholar 

  13. Daney, D., Hanrot, G., Lefèvre, V., Rouillier, F., Zimmermann, P.: The MPFR library (2001), http://www.mpfr.org

  14. Fischer, W., Lieb, I.: Funktionentheorie. Vieweg (1992)

    Google Scholar 

  15. Geulig, I., Krämer, W.: Computeralgebra und Verifikationsalgorithmen. University of Karlsruhe (1998)

    Google Scholar 

  16. Geulig, I., Krämer, W.: Intervallrechnung in Maple - Die Erweiterung intpakX zum Paket intpak der Share-Library. University of Karlsruhe (1999)

    Google Scholar 

  17. Grimmer, M.: Interval Arithmetic in Maple with intpakX. In: PAMM, vol. 2(1), pp. 442–443. Wiley-InterScience, Hoboken (2003)

    Google Scholar 

  18. Hansen, E.: Global optimization using interval analysis. Marcel Dekker, New York (1992)

    MATH  Google Scholar 

  19. Hansen, E., Greenberg, R.I.: An interval Newton method. J. of Applied Math. and Computing 12, 89–98 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hickey, T.-J., Ju, Q., Van Emden, M.-H.: Interval arithmetic: from principles to implementation. J. of ACM (2002)

    Google Scholar 

  21. Higham, N.: Accuracy and stability of numerical algorithms, 2nd edn. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  22. Kearfott, R.B.: Rigorous global search: continuous problems. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

  23. Kearfott, R.B., Walster, G.W.: On stopping criteria in verified nonlinear systems or optimization algorithms. ACM TOMS 26(3), 373–389 (2000)

    Article  MathSciNet  Google Scholar 

  24. Keiper, J.: Interval arithmetic in Mathematica. Interval Computations (3) (1993)

    Google Scholar 

  25. Klatte, R., Kulisch, U., Lawo, C., Rauch, M., Wiethoff, A.: C-XSC a C++ class library for extended scientific computing. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  26. Klatte, R., Kulisch, U., et al.: PASCAL-XSC. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  27. Knueppel, O.: PROFIL/BIAS - a fast interval library. Computing 53(3-4), 277–287 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Krämer, W., Kulisch, U., Lohner, R.: Numerical toolbox for verified computing II – Advanced Numerical Problems (1998) (to appear)

    Google Scholar 

  29. Krämer, W.: Mehrfachgenaue reelle und intervallmässige Staggered-Correction Arithmetik mit zugehörigen Standardfunktionen. Report of the Institut für Angewandte Mathematik, Karlsruhe (1988)

    Google Scholar 

  30. Kulisch, U.: Advanced Arithmetic for the Digital Computer. Design of the Arithmetic Units. von U.W. Kulisch, Springer, Wien (2002)

    Google Scholar 

  31. Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschuster, W., Krämer, W.: The interval library filib++ 2.0. (Preprint 2001/4) Universität Wuppertal, Germany (2001), http://www.math.uni-wuppertal.fr/org/WRST/software/filib.html

  32. Lebedev, N.N.: Special functions and their applications. Dover Publications, Inc., New York (1972)

    Google Scholar 

  33. Maeder, R.: The Mathematica Programmer: Interval Plotting and Global Optimization. The Mathematica Journal 7(3), 279–290 (1999)

    Google Scholar 

  34. Nurmela, K.J.: Constructing spherical codes by global optimization methods. Research report no 32, Helsinki University of Technology (1995), Available on http://www.tcs.hut.fi/Publications/bibdb/HUT-TCS-A32.ps.gz

  35. Petras, K.: Numerical Computation of an Integral Representation for Arithmetic-Average Asian Options (preprint), available on http://www.tu-bs.de/~petras/publications.html

  36. Petras, K.: A Method for Calculating the Complex Complementary Error Function with Prescribed Accuracy (preprint), available on http://www.tu-bs.de/~petras/publications.html

  37. Rall, L.B. (ed.): Automatic differentiation – Techniques and Applications. LNCS, vol. 120. Springer, Heidelberg (1981)

    MATH  Google Scholar 

  38. Revol, N.: Newton’s algorithm using multiple precision interval arithmetic. To appear in Numerical Algorithms, 2003. Research report 4334, INRIA (2001), http://www.inria.fr/rrrt/rr-4334.html

  39. Revol, N., Rouillier, F.: The MPFI library (2001), http://www.ens-lyon.fr/~nrevol

  40. Revol, N., Rouillier, F.: Motivations for an arbitrary precision interval arithmetic and the MPFI library. In: Reliable Computing (2003) (to appear)

    Google Scholar 

  41. Rouillier, F., Zimmermann, P.: Efficient isolation of polynomial real roots. To appear in J. of Computational and Applied Math., 2003. Research report 4113, INRIA (2001), http://www.inria.fr/rrrt/rr-4113.html

  42. Rump, S.M.: Solving algebraic problems with high accuraccy, Habilitationsschrift, Karlsruhe (1983); (also contained in Kulisch, U., Miranker, W.L. (eds.): A new approach to scientific computation. Proceedings of a symposium held at the IBM Research Center, Yorktown Heights, N.Y., 1982. Academic Press, New York, 1983, pp. 51–120)

    Google Scholar 

  43. Rump, S.: INTLAB - Interval Laboratory. chapter, Developments in reliable computing. In: Csendes, T. (ed.) , pp. 77–104. Kluwer, Dordrecht (1999)

    Google Scholar 

  44. Rump, S.: Fast and parallel interval arithmetic. BIT 39(3), 534–554 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  45. Schröder, M.: The Laplace transform approach to valuing exotic options: the case of the Asian option. In: Mathematical finance, Trends Math., pp. 328–338. Birkhäuser, Basel (2001)

    Google Scholar 

  46. Shub, M., Smale, S.: Complexity of Bezout’s theorem III. Condition number and packing. J. of Complexity 9, 4–14 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  47. Sun Microsystems, Inc. C++ interval arithmetic programming reference (2000)

    Google Scholar 

  48. Wiethoff, A.: Verifizierte globale Optimierung auf Parallelrechern. PhD thesis, Karlsruhe, Germany (1997)

    Google Scholar 

  49. Yohe, J.M.: Portable software for interval arithmetic. Computing, Suppl. 2, 211–229 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grimmer, M., Petras, K., Revol, N. (2004). Multiple Precision Interval Packages: Comparing Different Approaches. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds) Numerical Software with Result Verification. Lecture Notes in Computer Science, vol 2991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24738-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24738-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21260-7

  • Online ISBN: 978-3-540-24738-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics