Recognizing Objects in Range Data Using Regional Point Descriptors

  • Andrea Frome
  • Daniel Huber
  • Ravi Kolluri
  • Thomas Bülow
  • Jitendra Malik
Conference paper

DOI: 10.1007/978-3-540-24672-5_18

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3023)
Cite this paper as:
Frome A., Huber D., Kolluri R., Bülow T., Malik J. (2004) Recognizing Objects in Range Data Using Regional Point Descriptors. In: Pajdla T., Matas J. (eds) Computer Vision - ECCV 2004. ECCV 2004. Lecture Notes in Computer Science, vol 3023. Springer, Berlin, Heidelberg

Abstract

Recognition of three dimensional (3D) objects in noisy and cluttered scenes is a challenging problem in 3D computer vision. One approach that has been successful in past research is the regional shape descriptor. In this paper, we introduce two new regional shape descriptors: 3D shape contexts and harmonic shape contexts. We evaluate the performance of these descriptors on the task of recognizing vehicles in range scans of scenes using a database of 56 cars. We compare the two novel descriptors to an existing descriptor, the spin image, showing that the shape context based descriptors have a higher recognition rate on noisy scenes and that 3D shape contexts outperform the others on cluttered scenes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Andrea Frome
    • 1
  • Daniel Huber
    • 2
  • Ravi Kolluri
    • 1
  • Thomas Bülow
    • 1
  • Jitendra Malik
    • 1
  1. 1.University of California BerkeleyBerkeleyUSA
  2. 2.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations