Skip to main content

Symbolic Implementation of the Best Transformer

  • Conference paper
Verification, Model Checking, and Abstract Interpretation (VMCAI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2937))

Abstract

This paper shows how to achieve, under certain conditions, abstract-interpretation algorithms that enjoy the best possible precision for a given abstraction. The key idea is a simple process of successive approximation that makes repeated calls to a decision procedure, and obtains the best abstract value for a set of concrete stores that are represented symbolically, using a logical formula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stanford validity checker (1999), http://verify.stanford.edu/SVC/

  2. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate abstraction of C programs. In: Prog. Lang. Design and Impl., ACM Press, New York (2001)

    Google Scholar 

  3. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Clarke, E., Gupta, A., Kukula, J., Strichman, O.: SAT based abstraction-refinement using ILP and machine learning techniques. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 265. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Cousot, P., Cousot, R.: Abstract interpretation:A unified lattice model for static analysis of programs by construction of approximation of fixed points. In: Princ. of Prog. Lang. (1977)

    Google Scholar 

  7. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Princ. of Prog. Lang., pp. 269–282. ACM Press, New York (1979)

    Google Scholar 

  8. Das, S., Dill, D.L., Park, S.: Experience with predicate abstraction. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 160–171. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Detlefs, D., Nelson, G., Saxe, J.: Simplify, Compaq Systems Research Center, Palo Alto, CA (1999)

    Google Scholar 

  10. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, London (1972)

    MATH  Google Scholar 

  11. Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

    Google Scholar 

  12. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Princ. of Prog. Lang., January 2002, pp. 58–70. ACM Press, New York (2002)

    Google Scholar 

  13. ILOG. ILOG optimization suite: White paper. ILOG S.A., Gentilly, France (2001)

    Google Scholar 

  14. Kildall, G.A.: A unified approach to global program optimization. In: Princ. of Prog. Lang., pp. 194–206. ACM Press, New York (1973)

    Google Scholar 

  15. Klarlund, N., Møller, A.: MONA Version 1.4 User Manual. BRICS Notes Series NS-01-1, Univ. of Aarhus (January 2001)

    Google Scholar 

  16. McCune, W.: MACE User Manual and Guide. Argonne Nat. Lab. (May 2001)

    Google Scholar 

  17. Mitchell, T.M.: Machine Learning. WCB/McGraw-Hill, Boston, MA (1997)

    MATH  Google Scholar 

  18. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  19. Slaney, J.: Finder – Finite Domain Enumerator, Version 3.0. Aust. Nat. Univ. (July 1995)

    Google Scholar 

  20. Zhang, J., Zhang, H.: Generating models by SEM. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 308–312. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reps, T., Sagiv, M., Yorsh, G. (2004). Symbolic Implementation of the Best Transformer. In: Steffen, B., Levi, G. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2004. Lecture Notes in Computer Science, vol 2937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24622-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24622-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20803-7

  • Online ISBN: 978-3-540-24622-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics