Skip to main content

Almost Definite Causal Theories

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2923))

Abstract

The language of nonmonotonic causal theories, defined by Norman McCain and Hudson Turner, is an important formalism for representing properties of actions. For causal theories of a special kind, called definite, a simple translation into the language of logic programs under the answer set semantics is available. In this paper we define a similar translation for causal theories of a more general form, called almost definite. Such theories can be used, for instance, to characterize the transitive closure of a binary relation. The new translation leads to an implementation of a subclass of almost definite causal theories that employs the answer set solver smodels as the search engine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akman, V., Erdoğan, S., Lee, J., Lifschitz, V., Turner, H.: Representing the Zoo World and the Traffic World in the language of the Causal Calculator. Artificial Intelligence (2003) (to appear)

    Google Scholar 

  2. Babovich, Y., Erdem, E., Lifschitz, V.: Fages’ theorem and answer set programming. In: Proc. Eighth Int’l Workshop on Non-Monotonic Reasoning (2000), http://arxiv.org/abs/cs.ai/0003042

  3. Campbell, J., Lifschitz, V.: Reinforcing a claim in commonsense reasoning. In: Working Notes of the AAAI Spring Symposium on Logical Formalizations of Commonsense Reasoning (2003), http://www.cs.utexas.edu/users/vl/papers/sams.ps

  4. Doğandağ, S., Alpaslan, F.N., Akman, V.: Using stable model semantics (SMODELS) in the Causal Calculator (CCALC). In: Proc. 10th Turkish Symposium on Artificial Intelligence and Neural Networks, pp. 312–321 (2001)

    Google Scholar 

  5. Eiter, T., Gottlob, G.: Complexity results for disjunctive logic programming and application to nonmonotonic logics. In: Miller, D. (ed.) Proc. ILPS 1993, pp. 266–278 (1993)

    Google Scholar 

  6. Erdem, E., Lifschitz, V.: Tight logic programs. Theory and Practice of Logic Programming 3, 499–518 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Logic Programming: Proc. Fifth Int’l Conf. and Symp., pp. 1070–1080 (1988)

    Google Scholar 

  8. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)

    Article  Google Scholar 

  9. Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: Preliminary report. In: Proc. AAAI 1998, pp. 623–630. AAAI Press, Menlo Park (1998)

    Google Scholar 

  10. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artificial Intelligence (2003) (to appear), http://www.cs.utexas.edu/users/vl/papers/nmct.ps

  11. Lee, J.: Nondefinite vs. definite causal theories. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 141–153. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of Mathematics and Artificial Intelligence 25, 369–389 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lifschitz, V., McCain, N., Remolina, E., Tacchella, A.: Getting to the airport: The oldest planning problem in AI. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 147–165. Kluwer, Dordrecht (2000)

    Google Scholar 

  14. Lifschitz, V.: Missionaries and cannibals in the Causal Calculator. In: Principles of Knowledge Representation and Reasoning: Proc. Seventh Int’l. Conf., pp. 85–96 (2000)

    Google Scholar 

  15. McCain, N., Turner, H.: Causal theories of action and change. In: Proc. AAAI 1997, pp. 460–465 (1997)

    Google Scholar 

  16. McCain, N.: Causality in Commonsense Reasoning about Actions. PhD thesis, University of Texas at Austin (1997), ftp://ftp.cs.utexas.edu/pub/techreports/tr97-25.ps.Z

  17. Shanahan, M.: Solving the Frame Problem: A Mathematical Investigation of the Common Sense Law of Inertia. MIT Press, Cambridge (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doğandağ, S., Ferraris, P., Lifschitz, V. (2003). Almost Definite Causal Theories. In: Lifschitz, V., Niemelä, I. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2004. Lecture Notes in Computer Science(), vol 2923. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24609-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24609-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20721-4

  • Online ISBN: 978-3-540-24609-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics