Skip to main content

Aktorik in der Mikrosystemtechnik

  • Chapter
Book cover Mikrosystemtechnik
  • 644 Accesses

Zusammenfassung

In Anlehnung an DIN 19226 (Regelungs- und Steuerungstechnik) werden in diesem Buch unter Aktoren Steller, Stellglieder oder Stellgeräte verstanden. Im engeren Sinne werden hier Aktoren behandelt, die auf einer Wandlung von elektrischer in mechanischer Energie beruhen (Elemente der Leistungselektronik gehören also nicht dazu). Eine weitere Einschränkung des Begriffs betrifft die Möglichkeit zur Miniaturisierung und damit zur Einbindung in ein Mikrosystem. Da Aktoren in Mikrosystemen erst am Beginn der Entwicklung stehen, werden im ersten Abschnitt dieses Kapitels auch solche Aktorkonzepte vorgestellt, für die z. Zt. zwar noch keine marktreifen Mikrosystem-Realisierungen vorhanden sind, bei denen dies jedoch heute schon prinzipiell gezeigt wurde. Günstig sind dabei Aktorprinzipien, bei denen die erforderlichen Aktorelemente bzw. Werkstoffe mit Dünnschichttechniken (vgl. 2.4.1.1) erzeugt werden können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. W. S. N. Trimmer, K. J. Gabriel »Design considerations for a practical electrostatic micromotor«, Sensors and Actuators 11 (1987)

    Google Scholar 

  2. V. P. Jaecklin, C. Linder, N. F. de Rooij »Comb actuators for xy-microstages«, Sensors and Actuators A, 39 (1993) 83–89

    Article  Google Scholar 

  3. Heywang »Sensorik«, Springer Verlag (1988)

    Google Scholar 

  4. U. Dibbern »Piezoelectric Actuators in Multilayer Technique«, Proceedings Actuators 94, Ed. H. Borgmann, L. Lenz (Bremen 1994) 114–118

    Google Scholar 

  5. M. Sakata et al. »Sputtered high d31 coefficient PZT thin film for micro actuator«, MEMS 96 (San Diego 1996) 263–266

    Google Scholar 

  6. H. Janocha, Hrsg., »Aktoren, Grundlagen und Anwendungen«, Springer-Verlag, 1992

    Google Scholar 

  7. E. de Lacheisserie »Magnetostriction: Theory and application«, ed., CRC Press (1993) 410ff

    Google Scholar 

  8. A. E. Clark »Magnetostrictive rare earth-Fe2 Compounds«, Ferromagnetic Materials, Ed. E. R Wohlfarth, USA, Tome 1 (1980) 531–588

    Google Scholar 

  9. M.B. Molfett »Characterisation of Terfenol-D for magnetostrictive transducers«, JASA, 89 (3) (1991) 1448–1455

    Google Scholar 

  10. F. Claeyssen et. Al. »State of the art in the field of magnetostrictive actuators«, Proc. Actuators 94, Ed. H. Borgmann, L. Lenz (Bremen 1994), 203–209

    Google Scholar 

  11. E. Quandt et al. »Magnetostrictive thin film actuators«, Proc. Actuators 94, Ed, H. Borgmann, L. Lenz, (Bremen 1994) 229–231

    Google Scholar 

  12. G. Flik »Giant magnetostrictive thin film transducers for microsystems«, Proc. Actuators 94, Ed. H. Borgmann, L. Lenz, (Bremen 1994) 232–235

    Google Scholar 

  13. J. Van Humbeeck et al. »Shape memory alloys: materials in action«, Endesvour, New Series, Volume 15, No.4 (1991) 148–154

    Article  Google Scholar 

  14. A.D. Johnson et. al. »Fabrication of silicon-based shape memory alloy micro-actuators«, Mat. Res. Soc. Symp. Proc. Vol. 276, 1992

    Google Scholar 

  15. J. A. Walker, Sensors&Actuators, A21–23, (1990) 243–246

    Google Scholar 

  16. W. L. Benard et al, »A titanium-nickel shape-memory alloy actuated micropump«, Proceedings Transducers 97, (Chicago 1997) 361–364

    Google Scholar 

  17. M. Kohl, K. D. Skrobanek »Linear microactuators based on the shape memory effect«, in Proceedings Transducers 97, (Chicago 1997) 785–788,

    Google Scholar 

  18. J. H. J. Fluitman, H. Guckel, »Micro Actuator Principles«, in MST news, No. 18 (1996)

    Google Scholar 

  19. New Scientist, Nr. 1895, (1993) S. 20

    Google Scholar 

  20. W. Riethmüller, W. Benecke, »Thermally excited silicon microactuators«, IEEE Trans. On elect. Devices 35 No. 6 (1988) 758–763

    Article  Google Scholar 

  21. F. Pantuso, Micromachine Devices No. 6 (1997) 1–2

    Google Scholar 

  22. J. Franz et al., »A silicon microvalve with integrated flow sensor«, Proceedings Transducers’95, Vol. 2 (Stockholm 1995) 313–316

    Google Scholar 

  23. Willis M. Winslow, US-Patent Nr. 2.417.550, 1947

    Google Scholar 

  24. J. Judy, »Magnetic microactuators with polysilicon flexures«, Master-Report, (Berkeley 1994) p. 3

    Google Scholar 

  25. B. Wagner et al. »Microactuators with moving magnets for linear, torsional or multiaxial motion«, Sensors&Actuators A32 (1992), 598–603

    Google Scholar 

  26. L. Czepregi et al. »Technologie dünn geätzter Siliziumfolien im Hinblick auf monolithisch integrierbare Sensoren«, BMFT-Forschungsbericht T84–209, 1984

    Google Scholar 

  27. Masayosi Esashi »Integrated microflow control Systems«, Sensors and Actuators A21–A23 (1990) 161–167

    Google Scholar 

  28. R. Zengerle, A. Richter, »Eine Mikromembranpumpe mit elektrostatischem oder pneumatischen Antrieb«, Tagungsband des 2. Symposiums Mikrosystemtechnik, (Regensburg 1992) 207–214

    Google Scholar 

  29. J. W. Judy et al, »Surface-machined micromechanical membrane pump«, IEEE-MEMS wordshop, (1991). Nara (Japan), Tagungsband, pp. 182–186

    Google Scholar 

  30. R. Linnemann et al., »A full-wafer mounted self-priming and bubble-tolerant piezoelectric silicon micropump«, Tagungsband Actuators98 (Bremen 1998) 78–81

    Google Scholar 

  31. R. Zengerle et al. »A micro membrane pump with electrostatic actuation«, Proceedings of MEMS, (1992), pp.19–24

    Google Scholar 

  32. K. Sato et al. »Electrostatic film actuator with a large vertical displacement«, Proceedings MEMS92,(1992), pp. 1–5

    Google Scholar 

  33. M. Stehr et al., »A new micropump with bidirectional fluid transport and selfblocking effect«, Tagungsband MEMS96, (San Diego 1996) 485–490

    Google Scholar 

  34. L. Kuhn et al. »Silicon charge electrode array for ink jet printing«, IEEE Transaction on el. Devices 25, No. 10 (1978), 1257

    Article  Google Scholar 

  35. A. Heuberger (Hrsg) »Mikromechanik«; Springer-Verlag (1991)

    Google Scholar 

  36. K. Petersen, »Fabrication of an integrated, planar silicon ink-jet structure«, IEEE Transaction on el. devices 26, No. 12 (1979), 1918

    Article  Google Scholar 

  37. W. Wehl »Tintenstrahldrucktechnologie: Paradigma und Motor der Mikrosystemtechnik«, F&M 103 (1995), 6, pp. 318–324

    Google Scholar 

  38. W. Wehl, »Tintenstrahldrucktechnologie: Paradigma und Motor der Mikrosystemtechnik«, F&M 103 (1995), 9, pp. 486–491

    Google Scholar 

  39. http://www.ti.com/corp/docs/history/dmd.htm, »Digital Micromirror Device Delivering on Promises of ›Brighter‹ Future for Imaging Applications«

    Google Scholar 

  40. J. Guldberg et al. »A aluminium/SiO2 silicon on saphire light valve matgrix for projection displays«, Applied Phys. Lett. 26 (1975), 765

    Article  Google Scholar 

  41. Opto&Laser Europe, Sept. 1996 p. 16

    Google Scholar 

  42. M. Mignardi »Digital micromirror array for projection TV«, in Solid State Technology, Juli 1994, 63–68

    Google Scholar 

  43. G.M. Rebeiz, »RF-MEMS Switches: Status of the Technology«, Proceedings International Conference on Solid State Sensors, Actuators and Microsystems, Transducers03, Boston (USA), Juni 2003, 1726–1729

    Google Scholar 

  44. G.M. Rebeiz »RF MEMS Switches and Switch Circuits«, IEEE Microwave Magazine (Dec. 2001), 59–71

    Google Scholar 

  45. J Jason Yao »TOPICAL REVIEW: RF MEMS from a device perspective« J. Micromech. Microeng. 10 (2000) R9-R38

    Article  Google Scholar 

  46. WTC-Präsentation bei ZeMis, Juli 2003, Stuttgart, Daten von »NEXUS market analysis report 2002«

    Google Scholar 

  47. K.E. Petersen »Dynamic Micromechanics on Silicon«, IEEE Transactions on Electron Devices, vol. ED-25, Nr. 10 (Okt. 1978) 1241–1250

    Article  Google Scholar 

  48. H.F. Schlaak »Potentials and Limits of Micro-Electromechanical Systems for Relays and Switches«, 21st Internat. Conference on Electrical Contacts, 9–12 Sep. 2002, Zurich, Conference Proceedings

    Google Scholar 

  49. R. Holm: Electrical Contacts Handbook, Berlin, Heidelberg, New York, Springer 1967

    Google Scholar 

  50. A. Keil et al. »Elektrische Kontakte und ihre Werkstoffe«, Berlin, Heidelberg, New York, Tokyo, Springer Verlag 1984

    Google Scholar 

  51. J. Schimkat, H.-J. Gevatter, L. Kiesewetter, »Gold-Nickel als Kontaktwerkstoff für ein Silizium-Mikrorelais«, F&M 104 (1996), 7–8, S. 515–518

    Google Scholar 

  52. D. Saias et al. »An above IC MEMS RF Switch«, IEEE Journal of Solid-State circuits, Vol. 38, no. 12, Dec. 2003, S. 2318–2324

    Article  Google Scholar 

  53. M. Freudenreich, U. M. Mescheder, G. Somogyi, »Design Considerations and Realization of a novel Micromechanical Bi-stable Switch«, Digest of Transducers03, Boston (USA), Juni 2003, p. 1096–1099

    Google Scholar 

  54. S. Hannoe et. al »Mechanical and electrical characteristics of ultra-low-force contacts used in micromechanical relays». Proceedings 17 th Internat. Conference on electrical contacts (Nagoy, 1994), 185–190

    Google Scholar 

  55. H.-S. Lee et al., »Integrated Microrelays: Concept and initial results«, Joum. of Micro-electromechanical Systems, Vol. 11, no. 2, (April 2002), S. 147–153

    Google Scholar 

  56. K. Hiltmann et al. »Development of micromechanical switches with increased reliability«, Transducers 97, 1157–1160

    Google Scholar 

  57. H.F. Schlaak et al. »Silicon-Microrelay with Electrostatic Moving Wedge Actuator — New Functions and Miniturisation by Micromechanics«, Proc. Micro System Technologies, ’96, Potsdam, (1996), VDE-Verlag, pp. 463–468

    Google Scholar 

  58. http://www.memsrus.com/figs/techrelay.pdf

    Google Scholar 

  59. G.M. Rebeiz, »RF MEMS, Theory, Design and Technology«, Wiley, New York, 2003

    Book  Google Scholar 

  60. R.J. Richards, H.J. De Los Santos »MEMS for RF/Microwave Wireless Applications: the next wave«, Microwave Journal (März 2001) S. 20–26

    Google Scholar 

  61. Z.J. Yao et al. »Micromachined low-loss microwave Switches«, IEEE Journ. of Micro-electromechanical Systems, vol. 8 (1999), 129–134

    Article  Google Scholar 

  62. A.Q. Liu, X.M. Zhang, V.M. Murukeshan, Q.X. Zhang, Q.B. Zou and S. Uppili, »Optical Switch Using Draw-Bridge Micromirror for Large Array Crossconnects«, Tech. Digest Transducers ’01 — Eurosensors XV, Munich, Germany, June 10–14,2001, pp. 1324–1327

    Google Scholar 

  63. P.D. Dobbelaere et al. »Digital MEMS for Optical Switching«, IEEE Communications Magazine, (März 2002), S. 88–95

    Google Scholar 

  64. www.sercalo.com

    Google Scholar 

  65. C. Marxer, N.F. de Rooij, »Micro-opto-mechanical 2×2 switch for single-mode fibers based on plasma-etched silicon mirror and electrostatic actuation«, J. of Lightwave Technology, Vol. 17, No. 1 (Januar 1999), S. 2–6

    Article  Google Scholar 

  66. K. Hara, K, Hane, M. Sasaki and M. Kohl, »Si micromechanical Fiber-Optic Switch with Shape Memory Alloy Microactuator«, Solid-State Sensors and Actuators-Transducers ’99, Sendai, Japan, June 7–10, 1999, pp. 790–793

    Google Scholar 

  67. M. Hoffmann, P. Kopka, E. Voges, »Lensless Latching-Type Fiber Switches Using Silicon Micromachined Actuators«, 25th Optical Fiber Communication Conference, OFC 2000, Baltimore, Maryland, USA, Technical Digest, Thursday, March 9, 2000, pp. 250–252

    Google Scholar 

  68. C. Gonzáles and S.D. Collins, »Magnetically actuated fiber-optic switch with micromachined positioning stages«, OPTICAL LETTERS, Vol. 22, No. 10, May 15., 1997, pp. 709–711

    Article  Google Scholar 

  69. M.Herding, F.Richardt, P.Woias »A novel approach to low-cost optical fiber switches«, Proceedings of the International Conference on Optical MEMS, 18–21 Aug 2003, Waikoloa, Hawaii, USA, pp.141–142

    Google Scholar 

  70. P. Kopka et al. »Bistable 2×2 and multistable 1×4 micromechanical fibre-optical switches on Silicon«, Proceedings of Micro Opto Electro Mechanical Systems, MOEMS 99 (1999), S. 88–91

    Google Scholar 

  71. Mattias Vangbo and Ylva Bäcklund, »A lateral symmetrically bistable buckled beam«, J. Micromech. Microeng. 8 (1998), pp. 29–32

    Article  Google Scholar 

  72. Brian D. Jensen et al., @glqqDesign Optimization of a fully-compliant bistable micromechanism«, Tech. Digest of 2001 ASME International Mechanical Engineering Congress and Exposition, November 11–16, 2001, New York, NY, pp. 1–7

    Google Scholar 

  73. Jin Qui et al. »A Centrally-Clamped Parallel-Beam Bistable MEMS Mechanism«, Proc. IEEE Micro Electro Mechanical Systems (MEMS) 2001, pp. 353–356

    Google Scholar 

  74. Mattias Vangbo, »An analytical analysis of a compressed bistable buckled beam«, Sensors and Actuators A69 (1998), pp. 212–216

    Google Scholar 

  75. V. P. Jaecklin et al. »Novel Polysilicon Comb Actuator for x-stages«, Proceedings Micro Electro Mechanical Systems’92 (1992), Travemünde, pp. 147–149

    Google Scholar 

  76. P.-F. Indermuehle »Design and fabrication of an overhanging xy-microactuator with integrated tip for scanning surface profiling«, Sensors and Actuators A, 43 (1993), 346–350

    Article  Google Scholar 

  77. Li Fan et al. »Self-Assembled Microactuated yxz Stages for Optical Scanning and Alignment«, Proceedings Transducers97′. (Chicago 1997 319–322)

    Google Scholar 

  78. U. Wallrabe et al. »Theoretical and experimental results of an electrostatic micro motor with large gear ratio fabricated by the LIGA Prozeß«, IEEE Catalog No. 92CH3093-2, Tagungsband MEMS’92, Travemünde (1992), S. 139–140

    Google Scholar 

  79. Y. Gianchandani et al. »Batch fabrication and assembly of micromotor-driven mechanisms with multi-level linkages«, Proceedings MEMS’92, (Travemünde 1992) 141–146

    Google Scholar 

  80. W. Menz, P. Bley »Mikrosystemtechnik für Ingenieure«, VCH, 1993

    Google Scholar 

  81. C. Thüringen et al. »Design rules and manufacturing of micro gear Systems«, Proceedings Actuators98, (Bremen 1998). 572–575

    Google Scholar 

  82. U. Beckord et al. »Mikromotoren gewinnen Schwung«, F&M 11–12/97 (1997) pp. 850–852

    Google Scholar 

  83. U. Beckord et al. »Das kleinste Planetengetriebe der Welt«, F&M 1–2/98 (1998), pp. 49–52

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Vieweg + Teubner Verlag | Springer Fachmedien Wiesbaden GmbH

About this chapter

Cite this chapter

Mescheder, U. (2004). Aktorik in der Mikrosystemtechnik. In: Mikrosystemtechnik. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-84878-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-84878-9_4

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-16256-8

  • Online ISBN: 978-3-322-84878-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics