Skip to main content

Influence of External Factors on Inter-City Influenza Spread in Russia: A Modeling Approach

  • Chapter
  • First Online:

Abstract

The work is dedicated to the mathematical modeling of inter-city influenza spread in Russian Federation. The authors combine the local SEIR model of the influenza outbreak in an urban environment and the model of inter-city virus spread via migration flows, calibrating the resulting multicomponent model to long-term data on weekly acute respiratory infection incidence in 41 Russian cities. The aims of the research are: (a) to compare the modeling output with the observed picture of the virus spread and to assess its accuracy; (b) to assess the influence of the quality of transport data on the output; (c) to assess the applicability of the model for predicting influenza spread in Russia and to discuss the ways of changing the model to enhance its predictive ability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Aguirre, E. Gonzalez, The feasibility of forecasting influenza epidemics in Cuba. Mem. Inst. Oswaldo Cruz 87(3), 429–432 (1992)

    Article  Google Scholar 

  2. J.E. Anderson, The gravity model. Annu. Rev. Econ. 3, 133–160 (2011)

    Article  Google Scholar 

  3. O.V. Baroyan, L.A. Genchikov, L.A. Rvachev, V.A. Shashkov, An attempt at large-scale influenza epidemic modelling by means of a computer. Bull. Int. Epid. Assoc. 18, 22–31 (1969)

    Google Scholar 

  4. A. Flahault et al., Modelling the 1985 influenza epidemic in France. Stat. Med. 7(11), 1147–1155 (1988)

    Article  Google Scholar 

  5. J. Greenspan, S. Valkova, Documenting the missed opportunity period for influenza vaccination in office-based settings. Online J. Public Health Inform. 7(1), e26 (2015)

    Google Scholar 

  6. Yu.G. Ivannikov, A.T. Ismagulov, Epidemiologiya grippa (the epidemiology of influenza). Almaty, Kazakhstan, 1983 (in Russian)

    Google Scholar 

  7. Yu.G. Ivannikov, P.I. Ogarkov, An experience of mathematical computing forecasting of the influenza epidemics for big territory. Zhurnal Infectologii 4(3), 101–106 (2012) (in Russian)

    Google Scholar 

  8. V.N. Leonenko, S.V. Ivanov, Fitting the SEIR model of seasonal influenza outbreak to the incidence data for Russian cities. Russ. J. Numer. Anal. Math. Model. 31, 267–279 (2016)

    Article  MathSciNet  Google Scholar 

  9. V.N. Leonenko, S.V. Ivanov, Influenza peaks prediction in Russian cities: comparing the accuracy of two SEIR models. Math. Biosci. Eng. 15(1), 209–232 (2018). https://doi.org/10.3934/mbe.2018009

    MathSciNet  MATH  Google Scholar 

  10. V.N. Leonenko, S.V. Ivanov, Yu.K. Novoselova, A computational approach to investigate patterns of acute respiratory illness dynamics in the regions with distinct seasonal climate transitions. Proc. Comput. Sci. 80, 2402–2412 (2016)

    Article  Google Scholar 

  11. V.N. Leonenko, Yu.K. Novoselova, K.M. Ong, Influenza outbreaks forecasting in Russian cities: is Baroyan-Rvachev approach still applicable? Proc. Comput. Sci. 101, 282–291 (2016)

    Article  Google Scholar 

  12. D. Liu, J. Nocedal, On the limited memory BFGS method for large-scale optimization. Math. Program. 45, 503–528 (1989)

    Article  MathSciNet  Google Scholar 

  13. Research Institute of Influenza website. http://influenza.spb.ru/en/

  14. L.A. Rvachev, I.M. Longini, A mathematical model for the global spread of influenza. Math. Biosci. 75(1), 3–22 (1985)

    Article  MathSciNet  Google Scholar 

  15. C. Segolene, K. Pakdaman, P.-Y. Boëlle, Commuter mobility and the spread of infectious diseases: application to influenza in France. PloS one 9(1), e83002 (2014)

    Google Scholar 

  16. Slishkom populyarnyy marshrut Moskva-Sankt-Peterburg (in Russian) // ATO.RU. http://www.ato.ru/content/slishkom-populyarnyy-marshrut-moskva-sankt-peterburg

  17. C.C. Spicer, C.J. Lawrence, Epidemic influenza in greater London. J. Hyg. 93(01), 105–112 (1984)

    Article  Google Scholar 

  18. J. Tamerius, M.I. Nelson, S.Z. Zhou, C. Viboud, M.A. Miller, W.J. Alonso, Global influenza seasonality: reconciling patterns across temperate and tropical regions. Environ. Health Perspect. 119(4), 439 (2011)

    Google Scholar 

  19. S.P. Van Noort, R. Aguas, S. Ballesteros, M.G.M. Gomes, The role of weather on the relation between influenza and influenza-like illness. J. Theor. Biol. 298, 131–137 (2012)

    Article  Google Scholar 

  20. WHO, Influenza (seasonal). Fact sheet No. 211, March 2014. http://www.who.int/mediacentre/factsheets/fs211/en/

  21. Yandex.Raspisaniya. http://rasp.yandex.ru

Download references

Acknowledgements

The authors thank Vladislav Karbovskii and Vladislav Shmatkov (ITMO University) for providing the transport flow matrices. This research is financially supported by The Russian Science Foundation (Agreement #14-21-00137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Leonenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leonenko, V.N., Novoselova, Y.K. (2018). Influence of External Factors on Inter-City Influenza Spread in Russia: A Modeling Approach. In: Mondaini, R. (eds) Trends in Biomathematics: Modeling, Optimization and Computational Problems. Springer, Cham. https://doi.org/10.1007/978-3-319-91092-5_26

Download citation

Publish with us

Policies and ethics