Skip to main content

Logic Testing for Hardware Trojan Detection

  • Chapter
  • First Online:
Book cover The Hardware Trojan War

Abstract

In this chapter, we describe effective logic testing algorithms for relatively small (less than ten two-input NAND gate equivalent) hardware Trojan detection. Conventional post-manufacturing testing, test generation algorithms, and test coverage metrics cannot be readily extended to hardware Trojan detection. To reduce this lacuna, a novel test pattern generation technique termed multiple excitation of rare occurrence (MERO) is introduced, which maximizes the probability of inserted Trojans getting triggered and detected by logic testing, while drastically reducing the number of vectors compared to a weighted random pattern based test generation. Extending this approach and addressing some of the shortcomings of MERO, an enhanced automatic test pattern generation (ATPG) scheme using genetic algorithm and Boolean satisfiability is described and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Adee, The hunt for the kill switch. IEEE Spectr. 45(5), 34–39 (2008)

    Google Scholar 

  2. D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, B. Sunar, Trojan detection using IC fingerprinting, in SP’07: Proceedings of the IEEE Symposium on Security and Privacy (2007), pp. 296–310

    Google Scholar 

  3. M.E. Amyeen, S. Venkataraman, A. Ojha, S. Lee, Evaluation of the quality of N-detect scan ATPG patterns on a processor, in ITC’04: Proceedings of the International Test Conference (2004), pp. 669–678

    Google Scholar 

  4. M. Banga, M. Hsiao, A region based approach for the identification of hardware Trojans, in Proceedings of International Symposium on HOST (2008), pp. 40–47

    Google Scholar 

  5. M. Banga, M. Chandrasekar, L. Fang, M.S. Hsiao, Guided test generation for isolation and detection of embedded Trojans in ICs, in Proceedings of the 18th ACM Great Lakes symposium on VLSI (2008), pp. 363–366

    Google Scholar 

  6. R.S. Chakraborty, S. Bhunia, Security against hardware Trojan through a novel application of design obfuscation, in Proceedings of the 2009 International Conference on Computer-Aided Design (2009), pp. 113–116

    Google Scholar 

  7. R.S. Chakraborty, S. Narasimhan, S. Bhunia, Hardware Trojan: threats and emerging solutions, in Proceedings of IEEE International Workshop on HLDVT (2009), pp. 166–171

    Google Scholar 

  8. R.S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, S. Bhunia, MERO: a statistical approach for hardware Trojan detection, in Cryptographic Hardware and Embedded Systems-CHES 2009 (2009), pp. 396–410

    Google Scholar 

  9. DARPA, TRUST in Integrated Circuits (TIC) – Proposer Information Pamphlet (2007). http://www.darpa.mil/MTO/solicitations/baa07-24/index.html

  10. S. Dupuis, P.S. Ba, G. Di Natale, M.L. Flottes, B. Rouzeyre, A novel hardware logic encryption technique for thwarting illegal overproduction and Hardware Trojans, in 2014 IEEE 20th International On-Line Testing Symposium (IOLTS) (2014), pp. 49–54

    Google Scholar 

  11. S. Eggersglüß, R. Drechsler, High Quality Test Pattern Generation and Boolean Satisfiability (Springer, New York, 2012)

    Google Scholar 

  12. Z. Fu, Y. Marhajan, S. Malik, Zchaff sat solver (2004). Available: http://www.princeton.edu/chaff

  13. M.J. Geuzebroek, J.T. van der Linden, A.J. van de Goor, Test point insertion that facilitates atpg in reducing test time and data volume, in Proceedings International Test Conference (2002), pp. 138–147

    Google Scholar 

  14. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison Wesley, Boston, 2006)

    Google Scholar 

  15. U. Guin, K. Huang, D. DiMase, J.M. Carulli, M. Tehranipoor, Y. Makris, Counterfeit integrated circuits: a rising threat in the global semiconductor supply chain. Proc. IEEE 102(8), 1207–1228 (2014)

    Article  Google Scholar 

  16. Y. Huang, S. Bhunia, P. Mishra, Mers: statistical test generation for side-channel analysis based trojan detection, in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (2016), pp. 130–141

    Google Scholar 

  17. Y. Jin, Y. Makris, Hardware Trojan detection using path delay fingerprint, in IEEE International Workshop on Hardware-Oriented Security and Trust, HOST 2008 (2008), pp. 51–57

    Google Scholar 

  18. H.K. Lee, D.S. Ha, HOPE: an efficient parallel fault simulator for synchronous sequential circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 15(9), 1048–1058 (1996)

    Article  Google Scholar 

  19. B. Mathew, D.G. Saab, Combining multiple DFT schemes with test generation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 18, 685–696 (2006)

    Article  Google Scholar 

  20. X. Mingfu, H. Aiqun, L. Guyue, Detecting hardware Trojan through heuristic partition and activity driven test pattern generation, in Communications Security Conference (CSC), (2014), pp. 1–6

    Google Scholar 

  21. I. Pomeranz, S.M. Reddy, A measure of quality for n-detection test sets. IEEE Trans. Comput. 53(11), 1497–1503 (2004)

    Article  Google Scholar 

  22. R.M. Rad, X. Wang, M. Tehranipoor, J. Plusquellic, Power supply signal calibration techniques for improving detection resolution to hardware trojans, in 2008 IEEE/ACM International Conference on Computer-Aided Design (2008), pp. 632–639

    Google Scholar 

  23. J. Rajendran, Y. Pino, O. Sinanoglu, R. Karri, Security analysis of logic obfuscation, in Proceedings of the 49th Annual Design Automation Conference (2012), pp. 83–89

    Google Scholar 

  24. E.M. Rudnick, J.H. Patel, G.S. Greenstein, T.M. Niermann, A genetic algorithm framework for test generation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 16(9), 1034–1044 (1997)

    Article  Google Scholar 

  25. S. Saha, R.S. Chakraborty, S.S. Nuthakki, Anshul, D. Mukhopadhyay, Improved test pattern generation for hardware Trojan detection using genetic algorithm and boolean satisfiability, in Proceedings of the 17th International Workshop on Cryptographic Hardware and Embedded Systems – CHES 2015, Saint-Malo, 13–16 Sept 2015, (2015), pp. 577–596

    Google Scholar 

  26. H. Salmani, M. Tehranipoor, J. Plusquellic, A layout-aware approach for improving localized switching to detect hardware Trojans in integrated circuits, in 2010 IEEE International Workshop on Information Forensics and Security (WIFS) (2010), pp. 1–6

    Google Scholar 

  27. H. Salmani, M. Tehranipoor, J. Plusquellic, A novel technique for improving hardware Trojan detection and reducing Trojan activation time. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(1), 112–125 (2012)

    Google Scholar 

  28. S.M.H. Shekarian, M.S. Zamani, S. Alami, Neutralizing a design-for-hardware-trust technique, in 2013 17th CSI International Symposium on Computer Architecture and Digital Systems (CADS) (2013), pp. 73–78

    Google Scholar 

  29. S. Wei, M. Potkonjak, Scalable hardware Trojan diagnosis. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(6), 1049–1057 (2012)

    Google Scholar 

  30. F. Wolff, C. Papachristou, S. Bhunia, R.S. Chakraborty, Towards Trojan-free trusted ICs: problem analysis and detection scheme, in DATE’08: Proceedings of the Conference on Design, Automation and Test in Europe (2008), pp. 1362–1365

    Google Scholar 

  31. X. Zhang, M. Tehranipoor, RON: an on-chip ring oscillator network for hardware Trojan detection, in Design, Automation & Test in Europe Conference & Exhibition (DATE) (2011), pp. 1–6

    Google Scholar 

  32. B. Zhou, W. Zhang, S. Thambipillai, J. Teo, A low cost acceleration method for hardware Trojan detection based on fan-out cone analysis, in Proceedings of the 2014 International Conference on Hardware/Software Codesign and System Synthesis (2014), p. 28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidya Govindan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Govindan, V., Chakraborty, R.S. (2018). Logic Testing for Hardware Trojan Detection. In: Bhunia, S., Tehranipoor, M. (eds) The Hardware Trojan War. Springer, Cham. https://doi.org/10.1007/978-3-319-68511-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68511-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68510-6

  • Online ISBN: 978-3-319-68511-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics