Skip to main content

Multivariate Manifold Modelling of Functional Connectivity in Developing Language Networks

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10265))

Included in the following conference series:

  • 6457 Accesses

Abstract

There is an increasing consensus in the scientific and medical communtities that functional brain analysis should be conducted from a connectionist standpoint. Most connectivity studies to date rely on derived measures of graph properties. In this paper, we show that brain networks can be analyzed effectively by considering them as elements of the Riemannian manifold of symmetric positive definite matrices \(\text {Sym}^+\). Using recently proposed methods for manifold multivariate linear modelling, we analyze the developing functional connectivity of a small cohort of children aged 6 to 13 of both genders with strongly varying handedness indices at both rest and task simultaneously. We show that even with small sample sizes we can obtain results that reflect findings on large cohorts, and that \(\text {Sym}^+\) is a better framework for analyzing functional brain connectivity compared to Euclidean space.

G. Langs—This project was supported by FWF (KLI 544-B27, I 2714-B31) and OeNB (15356, 15929).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cole, M.W., Bassett, D.S., Power, J.D., Braver, T.S., Petersen, S.E.: Intrinsic and task-evoked network architectures of the human brain. Neuron 83(1), 238–251 (2014)

    Article  Google Scholar 

  2. Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R., et al.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–1165 (2011)

    Article  Google Scholar 

  3. Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A., Vogel, A.C., Laumann, T.O., Miezin, F.M., Schlaggar, B.L., et al.: Functional network organization of the human brain. Neuron 72(4), 665–678 (2011)

    Article  Google Scholar 

  4. Ginestet, C.E., Fournel, A.P., Simmons, A.: Statistical network analysis for functional MRI: summary networks and group comparisons. Front. Comput. Neurosci. 8, 51 (2014)

    Article  Google Scholar 

  5. Betzel, R.F., Byrge, L., He, Y., Goñi, J., Zuo, X.N., Sporns, O.: Changes in structural and functional connectivity among resting-state networks across the human lifespan. Neuroimage 102, 345–357 (2014)

    Article  Google Scholar 

  6. Cherian, A., Sra, S.: Riemannian dictionary learning and sparse coding for positive definite matrices. arxiv preprint. arXiv:1507.02772 (2015)

  7. Harandi, M., Salzmann, M., Hartley, R.: Dimensionality reduction on SPD manifolds: the emergence of geometry-aware methods. arxiv preprint. arXiv:1605.06182 (2016)

  8. Huang, Z., Wang, R., Shan, S., Li, X., Chen, X.: Log-euclidean metric learning on symmetric positive definite manifold with application to image set classification. In: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, pp. 720–729 (2015)

    Google Scholar 

  9. Varoquaux, G., Gramfort, A., Poline, J.B., Thirion, B.: Brain covariance selection: better individual functional connectivity models using population prior. In: Advances in Neural Information Processing Systems, pp. 2334–2342 (2010)

    Google Scholar 

  10. Ng, B., Dressler, M., Varoquaux, G., Poline, J.B., Greicius, M., Thirion, B.: Transport on Riemannian manifold for functional connectivity-based classification. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 405–412. Springer, Cham (2014). doi:10.1007/978-3-319-10470-6_51

    Google Scholar 

  11. Dodero, L., Minh, H.Q., San Biagio, M., Murino, V., Sona, D.: Kernel-based classification for brain connectivity graphs on the Riemannian manifold of positive definite matrices. In: IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 42–45. IEEE (2015)

    Google Scholar 

  12. Qiu, A., Lee, A., Tan, M., Chung, M.K.: Manifold learning on brain functional networks in aging. Med. Image Anal. 20(1), 52–60 (2015)

    Article  Google Scholar 

  13. Kim, H.J., Adluru, N., Collins, M.D., Chung, M.K., Bendlin, B.B., Johnson, S.C., Davidson, R.J., Singh, V.: Multivariate general linear models (MGLM) on Riemannian manifolds with applications to statistical analysis of diffusion weighted images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2705–2712 (2014)

    Google Scholar 

  14. Fletcher, P.T.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vision 105(2), 171–185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vision 66(1), 41–66 (2006)

    Article  MATH  Google Scholar 

  16. Jeuris, B., Vandebril, R., Vandereycken, B.: A survey and comparison of contemporary algorithms for computing the matrix geometric mean. Electr. Trans. Numer. Anal. 39(EPFL–ARTICLE–197637), 379–402 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Bini, D.A., Iannazzo, B.: Computing the Karcher mean of symmetric positive definite matrices. Linear Algebra Appl. 438(4), 1700–1710 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bini, D.A., Iannazzo, B.: A note on computing matrix geometric means. Adv. Comput. Math. 35(2–4), 175–192 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Glasser, M., Coalson, T., Robinson, E., Hacker, C., Harwell, J., Yacoub, E., Ugurbil, K., Anderson, J., Beckmann, C., Jenkinson, M., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016)

    Article  Google Scholar 

  20. Chen, Y., Wiesel, A., Eldar, Y.C., Hero, A.O.: Shrinkage algorithms for mmse covariance estimation. IEEE Trans. Sig. Process. 58(10), 5016–5029 (2010)

    Article  MathSciNet  Google Scholar 

  21. Van Essen, D.C., Smith, J., Glasser, M.F., Elam, J., Donahue, C.J., Dierker, D.L., Reid, E.K., Coalson, T., Harwell, J.: The brain analysis library of spatial maps and atlases (BALSA) database. NeuroImage 144, 270–274 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Schwartz, E., Nenning, KH., Kasprian, G., Schuller, AL., Bartha-Doering, L., Langs, G. (2017). Multivariate Manifold Modelling of Functional Connectivity in Developing Language Networks. In: Niethammer, M., et al. Information Processing in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science(), vol 10265. Springer, Cham. https://doi.org/10.1007/978-3-319-59050-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59050-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59049-3

  • Online ISBN: 978-3-319-59050-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics