Skip to main content

Optimization of Pin Fin Profiles

  • Chapter
  • First Online:
Optimal Control in Thermal Engineering

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 93))

  • 1197 Accesses

Abstract

Direct and indirect optimal control methods are used. Two different objective functions are considered. First, the transferred heat flux is maximized and the resulting optimal pin fin shape is a cylinder. Second, the pin volume is minimized for given value of the heat flux. Then, the optimum pin fin profile consists of two regions. In the first region, close to the basis, the pin thickness decreases linearly. In the second region the pin thickness is constant or may decrease, depending on thermal loads and operation. The optimal control solution is usually singular but may be very well approximated by a bang-bang solution. The technology and design constraints have important effects on pin fin profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azarkish, H., Sarvari, S.M.H., Behzadmehr, A.: Optimum geometry design of a longitudinal fin with volumetric heat generation under the influences of natural convection and radiation. Energy Convers. Manag. 51, 1938–1946 (2010)

    Article  Google Scholar 

  • Badescu, V.: Optimal profile of heat transfer pin fins under technological constraints. Energy 93, Part 2, 2292–2298 (2015)

    Google Scholar 

  • Betts, J.T.: Practical Methods For Optimal Control Using Nonlinear Programming Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2001)

    Google Scholar 

  • Bonnans, F., Giorgi, D., Grelard, V., Maindrault, S., Martinon, P., (2014). BOCOP—The Optimal Control Solver, User Guide. 8 Apr 2014 http://bocop.org

  • Chung, B.T.F., Talbot, D.J., Van Dyke, J.M.: A new look at the optimum dimensions of convective splines. AIChE Heat Transfer 84, 108–113 (1988)

    Google Scholar 

  • Das, S., Razelos, P.: Optimization of convective trapezoidal profile circular pin fins. Int. Comm. Heat Mass Transfer 24, 533–541 (1997)

    Article  Google Scholar 

  • Georgiou, E.N.: Analysis and optimization of convective pin fins with trapezoidal profile having internal heat generation density. J. Franklin Inst. 335B, 179–197 (1998)

    Article  Google Scholar 

  • Hajabdollahi, F., Rafsanjani, H.H., Hajabdollahi, Z., Hamidi, Y.: Multi-objective optimization of pin fin to determine the optimal fin geometry using genetic algorithm. Appl. Math. Model. 36, 244–254 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Hanin, L.: A new optimum pin fin beyond the “length-of-arc” assumption. Heat Transfer Eng. 29, 608–614 (2008)

    Article  Google Scholar 

  • Hanin, L., Campo, A.: A new minimum volume straight cooling fin taking into account the “length of arc”. Int. J. Heat Mass Transf. 46, 5145–5152 (2003)

    Article  MATH  Google Scholar 

  • Hollands, K.G.T., Stedman, B.A.: Optimization of an absorber plate fin having a step-change in local thickness. Sol. Energy 49, 493–495 (1992)

    Article  Google Scholar 

  • Kobus, C.J., Cavanaugh, R.B.: A theoretical investigation into the optimal longitudinal profile of a horizontal pin fin of least material under the influence of pure forced and pure natural convection with a diameter-variable convective heat transfer coefficient. J. Heat Transfer 128, 843–846 (2006)

    Article  Google Scholar 

  • Kovarik, M.: Optimal solar energy collector systems. Sol. Energy 17, 91–94 (1975)

    Article  Google Scholar 

  • Kundu, B.: Performance and optimization analysis of SRC profile fins subject to simultaneous heat and mass transfer. Int. J. Heat Mass Transf. 50, 1545–1558 (2007)

    Article  MATH  Google Scholar 

  • Kundu, B., Lee, K.-S.: Shape optimization for the minimum volume of pin fins in simultaneous heat and mass transfer environments. Heat Mass Transfer 48, 1333–1343 (2012a)

    Article  Google Scholar 

  • Kundu, B., Lee, K.-S.: A novel analysis for calculating the smallest envelope shape of wet fins with a nonlinear mode of surface transport. Energy 44, 527–543 (2012b)

    Article  Google Scholar 

  • Kundu, B., Lee, K.-S.: Analytic solution for heat transfer of wet fins on account of all nonlinearity effects. Energy 41, 354–367 (2012c)

    Article  Google Scholar 

  • Kundu, B., Lee, K.-S.: The effect of arc length on the least-volume fin under sensible and latent heat loads. Int. J. Heat Mass Transf. 63, 414–424 (2013)

    Article  Google Scholar 

  • Lawson, S.A., Thrift, A.A., Thole, K.A., Kohli, A.: Heat transfer from multiple row arrays of low aspect ratio pin fins. Int. J. Heat Mass Transf. 54, 4099–4109 (2011)

    Article  Google Scholar 

  • Li, C.H.: Optimum cylindrical pin fin. AIChE J. 29, 1043–1044 (1983)

    Article  Google Scholar 

  • Maday, C.J.: The minimum weight one-dimensional straight fin. ASME J. Engng. Ind. 96, 161 (1974)

    Article  Google Scholar 

  • Natarajan, U., Shenoy, U.V.: Optimum shapes of convective pin fins with variable heat transfer coefficient. J. Franklin Inst. 327, 965–982 (1990)

    Article  Google Scholar 

  • Nocedal, J., Wright, S.J.: Numerical optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  • Nwosu, N.P.: Employing exergy-optimized pin fins in the design of an absorber in a solar air heater. Energy 35, 571–575 (2010)

    Article  Google Scholar 

  • H.J. Oberle, W. Grimm, 2001. BNDSCO, A program for the Numerical Solution of Optimal Control Problems, Report No. 515 der DFVLR, [Deutsche Forschungs-und Versuchsanstalt fur Luft-und Raumfahrt e.V. 1989, Reihe B, Bericht 36], Oct 2001, (http://www.math.uni-hamburg.de/home/oberle/software.html)

  • Panda, S., Bhowmik, A., Das, R., Repaka, R., Martha, S.C.: Application of homotopy analysis method and inverse solution of a rectangular wet fin. Energy Convers. Manag. 80, 305–318 (2014)

    Article  MATH  Google Scholar 

  • Piskunov, N.: Differential and integral calculus. MIR Publishers, Moscow (1969)

    MATH  Google Scholar 

  • Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: Mathematical theory of optimal processes. Wiley, New York (1962)

    Google Scholar 

  • Razelos, P., Georgiou, E.: Two-dimensional effects and design criteria for convective extended surfaces. Heat Transfer Eng. 13, 38–48 (1992)

    Article  Google Scholar 

  • Razelos, P., Imre, K.: Minimum mass convective fins with variable heat transfer coefficients. J. Franklin Inst. 315, 269 (1983)

    Article  Google Scholar 

  • Rong-Hua, Y.: Errors in one-dimensional fin optimization problem for convective heat transfer, Int. J. Heat Mass Transfer 39, 3075–3078 ( 1996)

    Google Scholar 

  • Rong-Hua, Y.: An analytical study of the optimum dimensions of rectangular fins and cylindrical pin fins. Int. J. Heat Mass Transf. 40, 3607–3615 (1997)

    Article  MATH  Google Scholar 

  • Schmidt, E.: Die Wlrmeubertragung durch Rippen. Z. Verein. Deutsch Ing. 70, 885 (1926)

    Google Scholar 

  • Sertkaya, A.A., Bilir, S., Kargıcı, S.: Experimental investigation of the effects of orientation angle on heat transfer performance of pin-finned surfaces in natural convection. Energy 36, 1513–1517 (2011)

    Article  Google Scholar 

  • Shuja, S.Z.: Optimal fin geometry based on exergoeconomic analysis for a pin-fin array with application to electronics cooling. Exergy 2, 248–258 (2002)

    Article  Google Scholar 

  • Sonn, A., Bar-Cohen, A.: Optimum cylindrical pin fin, ASME. J. Heat Transfer 103, 814–815 (1981)

    Article  Google Scholar 

  • Tiris, C., Tiris, M., Ture, I.E.: Effects of fin design on collector efficiency. Energy 20, 1021–1026 (1995)

    Article  Google Scholar 

  • Tolle, H.: Optimization methods. Springer, New York (1975)

    Book  MATH  Google Scholar 

  • Torabi, M., Aziz, A., Zhang, K.: A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities. Energy 51, 243–256 (2013)

    Article  Google Scholar 

  • Wachter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program 106, 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Walther, A., Griewank, A.: Getting started with ADOL-C. In: Naumann, U., Schenk, O. (eds.) Combinatorial Scientific Computing, Chapman-Hall CRC, Computational Science (2012)

    Google Scholar 

  • Yovanovich, M.M.: On the effect of shape, aspect ratio and orientation upon natural convection from isothermal bodies of complex shape. ASME HTD 82, 121–129 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorel Badescu .

Appendix 13A

Appendix 13A

The objective is to optimize the pin shape for the maximization of the heat flux Q. For simplicity Eq. (13.1.5) with \( k = 1 \) is adopted. The following notation is used:

$$ \begin{aligned} A_{0} \equiv A(z = 0) \hfill \\ P_{0} \equiv P(z = 0) \hfill \\ \end{aligned} $$
(13.A.1a, b)

Usage of Eqs. (13.1.2)–(13.1.5) and (13.A.1a, b) gives the dependence of the cross section area and perimeter, respectively, on \( z \):

$$ \begin{aligned} A(z) = u^{2} (z)A_{0} \hfill \\ P(z) = u(z)P_{0} \hfill \\ \end{aligned} $$
(13.A.2a, b)

From Eq. (13.A.2a, b) one finds:

$$ P(z) = P_{0} \left[ {\frac{A(z)}{{A_{0} }}} \right]^{1/2} $$
(13.A.3)

The procedure adopted here is based on Pontryagin’s principle. The same procedure has been used by Maday (1974), Razelos and Imre (1983) and Natarajan and Shenoy (1990). The quoted authors used two state functions and the control was the pin diameter. Thus, the Hamiltonian was non-linear in the control and the solution did not contain singular arcs (Natarajan and Shenoy 1990). Here the heat flux Q given by Eq. (13.1.8) is maximized by using Eq. (13.1.7) as a constraint. The derivative:

$$ \tilde{A} \equiv \frac{dA}{dz} $$
(13.A.4)

is the control while a new variable, \( \tilde{Q} \), is introduced in order to transform the Bolza optimal control problem into a standard Mayer problem. Then, the following equations system is to be solved:

$$ \begin{aligned} \frac{dT}{dz} & = \tilde{T} \\ \frac{{d\tilde{T}}}{dz} & = - \frac{{\tilde{A}}}{A}\tilde{T} + \frac{h}{\lambda }\frac{{P_{0} }}{{A_{0}^{1/2} }}\frac{1}{{A^{1/2} }}(T\text-T_{\infty } ) \\ \frac{{d\tilde{Q}}}{dz} & = \frac{{hP_{0} }}{{A_{0}^{1/2} }}A^{1/2} (T - T_{\infty } ) \\ \end{aligned} $$
(13.A.5a–c)

Equation (13.A.5a, b) comes from Eq. (13.A.7) by using Eqs. (13.A.3) and (13.A.4) while Eq. (13A.5c) comes from Eqs. (13.1.8) and 13.A.3). The objective is to maximize \( \tilde{Q}(z = L) \).

The ordinary differential Eq. (13.A.5a–c) can be solved by using appropriate boundary conditions. However, there is no need to do this here. The Hamiltonian \( H \) of the system is built as described by Tolle (1975) and Chap. 5 of this book:

$$ \begin{aligned} & H \equiv f_{T} \frac{dT}{dz} + f_{{\tilde{T}}} \frac{{d\tilde{T}}}{dz} + f_{{\tilde{Q}}} \frac{{d\tilde{Q}}}{dz} = \\ & f_{T} \tilde{T} + f_{{\tilde{T}}} \left[ { - \frac{{\tilde{A}}}{A}\tilde{T} + \frac{h}{\lambda }\frac{{P_{0} }}{{A_{0}^{1/2} }}\frac{1}{{A^{1/2} }}(T - T_{\infty } )} \right] + f_{{\tilde{Q}}} \left[ {\frac{{hP_{0} }}{{A_{0}^{1/2} }}A^{1/2} (T\text{ - }T_{\infty } )} \right] \\ \end{aligned} $$
(13.1.26)

where \( f_{T} ,f_{{\tilde{T}}} ,f_{{\tilde{Q}}} \) are adjoint functions. The Hamiltonian is linear in the control \( \tilde{A} \). Therefore, the solution is non-regular and the control is not uniquely determined for all values of state and adjoint functions [Oberle and Grimm (2001, p. 22)]. In some common cases depending on constraints, the non-regular solution is of bang-bang type, i.e. the control jumps from the minimum to the maximum allowed value. The maximum value of \( \tilde{A} \) is zero and this means that \( A(z) \) is a constant (= \( A_{0} \)). From Eq. 13.A.3) one sees that \( P(z) \) is also constant. Thus, the optimal pin shape which maximizes the heat flux transferred to the fluid is a cylinder whose basis is delimitated by the contour curve C.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Badescu, V. (2017). Optimization of Pin Fin Profiles. In: Optimal Control in Thermal Engineering. Studies in Systems, Decision and Control, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-319-52968-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52968-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52967-7

  • Online ISBN: 978-3-319-52968-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics