Skip to main content

Cultigen Chenopods in the Americas: A Hemispherical Perspective

  • Chapter
  • First Online:

Abstract

In this chapter, we summarize recent contributions made by archaeologists and researchers in other disciplines toward understanding the many factors involved in the domestication of Chenopodium berlandieri in North America and Chenopodium quinoa in South America. We focus on studies of seed morphology and molecular genetics, which have aided in clarifying the trajectories of domestication for both species. The comparison of these trajectories allows us to examine the similarities and differences in the evolutionary, economic, social, and political processes that contributed not only to their domestication but the roles they played in the later agricultural and sociopolitical systems in their respective regions. The eastern North American cultigen chenopod eventually lost its role as a key component of pre-Columbian agricultural systems, whereas quinoa flourished in the Andes and has attained global super-food status today. Still, both of these crops constituted food that was central to and inseparable from considerations of identity, status, ritual, exchange, and sociopolitical life. An appreciation of chenopods as important foods in each region allows us to reflect upon their diverse evolutionary pathways and the significance of individual foods and broader cuisines within regional histories.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Andean region is expansive, and domesticated chenopods likely had distinct trajectories in its subregions. We focus here on our primary research areas in the Bolivian altiplano (a high plain that runs between the eastern and western Andes ranges).

References

  • Albarracín-Jordan, J. (1992). Prehispanic and early colonial settlement patterns in the lower Tiwanaku valley, Bolivia. Ph.D. Dissertation. Dallas: Department of Anthropology, Southern Methodist University.

    Google Scholar 

  • Aldenderfer, M. S. (1989). Archaic period in the South Central Andes. Journal of World Prehistory, 3(2), 117–158.

    Article  Google Scholar 

  • Arkush, E. N. (2008). War, causality, and chronology in the Titicaca Basin. Latin American Antiquity, 19(4), 339–373.

    Article  Google Scholar 

  • Arkush, E. N. (2011). Hillforts of the ancient Andes: Colla warfare, society, and landscape. Gainesville: University Press of Florida.

    Book  Google Scholar 

  • Balzotti, M. R. B., Thornton, J. N., Maughan, P. J., McClellan, D. A., Stevens, M. R., Jellen, E. N., et al. (2008). Expression and evolutionary relationships of the Chenopodium quinoa 11S seed storage protein gene. International Journal of Plant Sciences, 169, 281–291.

    Article  Google Scholar 

  • Bandy, M. S. (2001). Population and history in the ancient Titicaca Basin. Ph. D. Dissertation. Berkeley: Department of Anthropology, University of California.

    Google Scholar 

  • Bandy, M. S. (2004). Fissioning, scalar stress, and social evolution in early village societies. American Anthropologist, 106(2), 322–333.

    Article  Google Scholar 

  • Bauer, B. S. (2004). Ancient Cuzco: heartland of the Inca. Austin: University of Texas Press.

    Google Scholar 

  • Bauer, B. S., & Stanish, C. (2001). Ritual and pilgrimage in the ancient Andes: the Islands of the Sun and the Moon. Austin: University of Texas Press.

    Google Scholar 

  • Berryman, C. A. (2010). Food, feasts, and the construction of identity and power in ancient Tiwanaku: a bioarchaeological perspective. Ph. D. Dissertation. Nashville, TN: Department of Anthropology, Vanderbilt University.

    Google Scholar 

  • Betanzos, J. (1996). Narrative of the Incas: from the Palma de Mallorca Manuscript, 1557 (trans: Hamilton, R., & Buchanan, D.). Austin: University of Texas Press.

    Google Scholar 

  • Bhargava, A., Shukla, S., & Ohri, D. (2006). Karyotypic studies on some cultivated and wild species of Chenopodium (Chenopodiaceae). Genetic Resources and Crop Evolution, 53, 1309–1320.

    Article  Google Scholar 

  • Bhargava, A., Shukla, S., & Ohri, D. (2007). Genome size variation in some cultivated and wild species of Chenopodium (Chenopodiaceae). Caryologia, 60, 245–250.

    Article  Google Scholar 

  • Browman, D. L. (1980). Tiwanaku expansion and altiplano economic patterns. Estudios Arqueologicos, 5, 107–120.

    Google Scholar 

  • Bruno, M. C. (2001). Formative Agriculture? The status of Chenopodium domestication and intensification at Chiripa, Bolivia (1500 B.C.–A.D.100). Master’s Thesis. St. Louis, MO: Department of Anthropology, Washington University.

    Google Scholar 

  • Bruno, M. C. (2006). A morphological approach to documenting the domestication of Chenopodium in the Andes. In M. A. Zeder, D. G. Bradley, E. Emshwiller, & B. D. Smith (Eds.), Documenting domestication: new genetic and archaeological paradigms (pp. 32–45). Berkeley: University of California Press.

    Google Scholar 

  • Bruno, M. C. (2008). Waranq Waranqa: Ethnobotanial Perspectives on agricultural intensification in the Lake Titicaca Basin (Taraco Peninsula, Bolivia). Ph.D. Dissertation. St. Louis: Department of Anthropology, Washington University.

    Google Scholar 

  • Bruno, M. C., Rojas, W., & Pinto, M. (2013). Morfología de semillas de cañahua (Chenopodium pallidicaule Aellen) silvestres y domesticadas: hacia un mejor entendimiento de los procesos de domesticación. Ibarra, Ecuador: Paper presented at the IV Congreso Mundial de Quinua.

    Google Scholar 

  • Bruno, M. C., & Whitehead, W. T. (2003). Chenopodium cultivation and formative period agriculture at Chiripa, Bolivia. Latin American Antiquity, 14, 339–355.

    Article  Google Scholar 

  • Burger, R. L., Mohr-Chávez, K. L., & Chávez, S. J. (2000). Through the glass darkly: prehispanic obsidian procurement and exchange in southern Peru and northern Bolivia. Journal of World Prehistory, 14, 267–362.

    Article  Google Scholar 

  • Capriles Flores, J. M. (2014). The economic organization of early camelid pastoralism in the Andean highlands of Bolivia. Oxford: British Archaeological Reports.

    Google Scholar 

  • Christensen, S. A., Pratt, D. B., Pratt, C., Nelson, P. T., Stevens, M. R., Jellen, E. N., et al. (2007). Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genetic Resources: Characterization and Utilization, 5, 82–95.

    Article  Google Scholar 

  • Cobo, B. (1945). Historia del nuevo mundo, Biblioteca de autores españoles. Madrid: Editorial Atlas.

    Google Scholar 

  • Cobo, B. (1979). History of the Inca Empire (trans: Hamilton, R.). Austin: University of Texas Press.

    Google Scholar 

  • Costa Tártara, S. M., Manifesto, M. M., Bramardi, S. J., & Bertero, H. D. (2012). Genetic structure in cultivated quinoa (Chenopodium quinoa Willd.), a reflection of landscape structure in Northwest Argentina. Conservation Genetics, 13, 1027–1038.

    Article  Google Scholar 

  • Crothers, G. M. (2012). Early Woodland ritual use of caves in eastern North America. American Antiquity, 77, 524–541.

    Article  Google Scholar 

  • D’Altroy, T. N., & Hastorf, C. A. (1984). The distribution and contents of Inca state storehouses in the Xauxa region of Peru. American Antiquity, 49, 334–349.

    Article  Google Scholar 

  • D’Altroy, T. N., & Hastorf, C. A. (1992). The architecture and contents of Inka State storehouses in the Xauxa Region of Peru. In T. Y. LeVine (Ed.), Inka storage systems (pp. 259–286). Norman: University of Oklahoma Press.

    Google Scholar 

  • del Castillo, C., Winkel, T., Mahy, G., & Bizoux, J. (2007). Genetic structure of quinoa (Chenopodium quinoa Willd.) from the Bolivian altiplano as revealed by RAPD markers. Genetic Resources and Crop Evolution, 54, 897–905.

    Article  Google Scholar 

  • Delcourt, P. A., & Delcourt, H. R. (2004). Prehistoric native Americans and ecological change: human ecosystems in eastern North America since the Pleistocene. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • DeWet, J. M. J., & Harlan, J. (1975). Weeds and domesticates: evolution in the man-made habitat. Economic Botany, 29, 99–107.

    Article  Google Scholar 

  • Earle, T. K. (1992). Storage and the Inka imperial economy: archaeological research. In T. Y. LeVine (Ed.), Inka Storage Systems (pp. 327–342). Norman: University of Oklahoma Press.

    Google Scholar 

  • Edging, R. (2007). The vacant quarter hypothesis: a survivor’s story. Missouri Archaeologist, 68, 59–93.

    Google Scholar 

  • Eisentraut, P. J. (1998). Macrobotanical remains from southern Peru: a comparison of Late Archaic-early formative period sites from the Puna and Suni zones of the Western Titicaca Basin. Ph. D. Dissertation. Santa Barbara, CA: Department of Anthropology, University of California.

    Google Scholar 

  • Fritz, G. J. (1984). Identification of cultigen amaranth and chenopod from rockshelter sites in Northwest Arkansas. American Antiquity, 49, 558–572.

    Article  Google Scholar 

  • Fritz, G. J. (1986). Prehistoric Ozark agriculture: the University of Arkansas rockshelter collections. Ph. D. Dissertation. Chapel Hill, NC: Department of Anthropology, University of North Carolina at Chapel Hill.

    Google Scholar 

  • Fritz, G. J. (1993). Early and Middle Woodland period paleoethnobotany. In C. M. Scarry (Ed.), Foraging and farming in the eastern Woodlands (pp. 39–56). Gainesville: University Press of Florida.

    Google Scholar 

  • Fritz, G. J. (2000). Food and ceremonial plants from Sub-Mound 51 at Cahokia. Report submitted to Timothy Pauketat, P.I. of NSF-Sponsored Early Cahokia Project. Ms. on file at Washington University in St. Louis, Paleoethnobotanical Laboratory.

    Google Scholar 

  • Fritz, G. J., & Smith, B. D. (1988). Old collections and new technology: documenting the domestication of Chenopodium in eastern North America. Midcontinental Journal of Archaeology, 13, 3–27.

    Google Scholar 

  • Fuentes, F. F., Martinez, E. A., Hinrichsen, P. V., Jellen, E. N., & Maughn, P. J. (2009). Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conservation Genetics, 10, 369–377.

    Article  Google Scholar 

  • Fuentes, F. F., & Zurita-Silva, A. (2013). Molecular studies. In A. Bhargava & S. Srivastava (Eds.), Quinoa: Botany, production and uses (pp. 168–184). Boston: CABI.

    Chapter  Google Scholar 

  • Gardner, P. S. (1987). New evidence concerning the chronology and paleoethnobotany of Salts Cave, Kentucky. American Antiquity, 52, 358–366.

    Article  Google Scholar 

  • Gilmore, M. R. (1931). Vegetal remains of the Ozark Bluff-Dweller culture. Papers of the Michigan Academy of Science, Arts, and Letters, 14, 38–102.

    Google Scholar 

  • Goldstein, P. S. (2003). From stew-eaters to maize-drinkers, the chicha economy and the Tiwanaku expansion. In T. L. Bray (Ed.), The archaeology and politics of food and feasting in early states and empires (pp. 143–172). New York: Springer.

    Google Scholar 

  • Gordon, A. G. (2006). Domesticated Chenopodium in North America: comparing the past and the present. Ph. D. Dissertation. St. Louis, MO: Department of Anthropology, Washington University.

    Google Scholar 

  • Gremillion, K. J. (1993). The evolution of seed morphology in domesticated Chenopodium: an archaeological case study. Journal of Ethnobiology, 13, 149–169.

    Google Scholar 

  • Gremillion, K. J. (2014). Goosefoot (Chenopodium). In P. E. Minnis (Ed.), New lives for ancient and extinct crops (pp. 44–64). Tucson: University of Arizona Press.

    Google Scholar 

  • Hastorf, C. A. (2003). Community with the ancestors: ceremonies and social memory in the middle formative at Chiripa, Bolivia. Journal of Anthropological Archaeology, 22, 305–332.

    Article  Google Scholar 

  • Hastorf, C. A. (2006). Domesticated food and society in early coastal Peru. In W. Balée & C. L. Erickson (Eds.), Time and complexity in historical ccology: studies in the Neotropical lowlands (pp. 87–126). New York: Columbia University Press.

    Google Scholar 

  • Hastorf, C. A., Whitehead, W. T., Bruno, M. C., & Wright, M. (2006). The movements of maize into middle horizon Tiwanakau, Bolivia. In R. Tykot, J. Staller, & B. Benz (Eds.), Histories of Maize: multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of Maize (pp. 429–448). Oxford: Academic Press.

    Google Scholar 

  • Hunziker, A. (1952). Los pseudocereales de la agricultura indígena de América. Buenos Aires: Acme Agency.

    Google Scholar 

  • Janusek, J. W. (2008). Ancient Tiwanaku. Cambridge: Cambridge University Press.

    Google Scholar 

  • Janusek, J. W., & Kolata, A. L. (2004). Top-down or bottom-up: rural settlement and raised field agriculture in the Lake Titicaca Basin, Bolivia. Journal of Anthropological Archaeology, 23, 404–430.

    Article  Google Scholar 

  • Jarvis, D. E., Kopp, O. R., Jellen, E. N., Mallory, M. A., Pattee, J., Bonifacio, A., et al. (2008). Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). Journal of Genetics, 87, 39–51.

    Article  Google Scholar 

  • Jefferies, R. W. (1996). The emergence of long distance trade networks in the Southeastern United States. In K. Sassaman & D. Anderson (Eds.), Archaeology of the mid-Holocene Southeast (pp. 222–234). Gainesville: University Press of Florida.

    Google Scholar 

  • Johannessen, S. (1993). Farmers of the Late Woodland. In C. M. Scarry (Ed.), Foraging and farming in the eastern Woodlands (pp. 57–77). Gainesville: University Press of Florida.

    Google Scholar 

  • Kistler, L., & Shapiro, B. (2011). Ancient DNA confirms a local origin of domesticated chenopod in eastern North America. Journal of Archaeological Science, 38, 3549–3554.

    Article  Google Scholar 

  • Kolata, A. L. (1986). The agricultural foundations of the Tiwanaku State: a view from the Heartland. American Antiquity, 51(4), 748–762.

    Article  Google Scholar 

  • Kolata, A. L. (1991). The technology and organization of agricultural production in the Tiwanaku state. Latin American Antiquity, 2(2), 99–125.

    Article  Google Scholar 

  • Kolata, A. L. (1993). The Tiwanaku: portait of an Andean civilization. Oxford: Blackwell Press.

    Google Scholar 

  • Kuznar, L. A. (1993). Mutualism between Chenopodium, herd animals, and herders in the south central Andes. Mountain Research and Development, 13, 257–265.

    Article  Google Scholar 

  • Langlie, B. S. (2011). A paleoethnobotanical analysis of three formative period Wankarani sites located in the department of Oruro, Bolivia. M.A. Thesis. St. Louis, MO: Department of Anthropology, Washington University.

    Google Scholar 

  • Langlie, B. S., & Arkush, E. N. (2016). Managing mayhem: conflict, environment, and subsistence in the Andean Late Intermediate Period, Puno, Peru. In A. VanDerwarker & G. Wilson (Eds.), The archaeology of food and warfare: food insecurity in prehistory (pp. 259–290). New York: Springer.

    Chapter  Google Scholar 

  • Langlie, B. S., Hastorf, C. A., Bruno, M. C., Bermann, M., Bonzani, R. M., & Castellón Condarco, W. (2011). Diversity in Andean Chenopodium domestication: describing a new morphological type from La Barca, Bolivia 1300-1250 BC. Journal of Ethnobiology, 31, 72–88.

    Article  Google Scholar 

  • LeVine, T. Y. (1992). Inka storage systems. Norman: University of Oklahoma Press.

    Google Scholar 

  • López, M. L., Bruno, M. C., & Planella, M. T. (2015). El género Chenopodium: metodología aplicada a la identificación taxonómica en ejemplares arqueológicos. Presentación de Casos de Estudio de La Región Sur-Andina. In C. Belmar, & V. Lema (Eds.), Avances y desafios metodológicos en arqueobotánica: miradas consensuadas y diálogos compartidos desde Sudamérica (pp. 89–192, Monografías arqueológicas, Facultada Patrimonio, Cultura, y Educación). Chile: Universidad SEK.

    Google Scholar 

  • López, M. L., & Nielsen, A. E. (2012). Macrorrestos de Chenopodium quinoa Willd. en la plaza de Laqaya (Nor Lípez, Potosí, Bolivia). Revista Intersecciones en Antropología, 14, 295–300.

    Google Scholar 

  • Lopinot, N. H. (1997). Cahokian food production reconsidered. In T. R. Pauketat & T. E. Emerson (Eds.), Cahokia: domination and ideology in the Mississippian world (pp. 52–68). Lincoln: University of Nebraska Press.

    Google Scholar 

  • Maughan, P. J., Bonifacio, A., Jellen, E. N., Stevens, M., Coleman, C. E., Ricks, M., et al. (2004). A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theoretical and Applied Genetics, 109, 1188–1195.

    Article  Google Scholar 

  • Maughan, P. J., Kolano, B. A., Maluszynska, J., Coles, N. D., Bonifacio, A., Rojas, J., et al. (2006). Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri. Genome, 49, 825–839.

    Article  Google Scholar 

  • Maughan, P. J., Smith, S. M., Rojas-Beltrán, J. A., Elzinga, D., Raney, J. A., Jellen, E. N., et al. (2012). Single nucleotide polymorphisms identification, characterization and linkage mapping in Chenopodium quinoa. The Plant Genome, 5, 1–7.

    Article  Google Scholar 

  • Maughan, P. J., Turner, T. B., Coleman, C. E., Elzinga, D. B., Jellen, E. N., Morales, J. A., et al. (2009). Characterization of salt overly sensitive (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd). Genome, 52, 647–657.

    Article  Google Scholar 

  • McClung de Tapia, E., & Rios-Fuentes, J. (2006). Chenopodium spp.: on the road to domestication in the pre-hispanic Basin of Mexico. Paper presented at the 71st Annual Meeting of the Society for American Archaeology, Puerto Rico, 26 April.

    Google Scholar 

  • Mengoni Goñalons, G. L., & Yacobaccio, H. D. (2006). The domestication of South American camelids: a view from the South-Central Andes. In M. A. Zeder, D. G. Bradley, E. Emshwiller, & B. D. Smith (Eds.), Documenting domestication: new genetic and archaeological paradigms (pp. 228–244). Berkeley: University of California Press.

    Google Scholar 

  • Morris, C. E. (1976). The archaeological study of Andean exchange systems. In C. L. Redman, M. J. Berman, E. V. Curtin, W. T. Langhorne Jr., N. M. Versaggi, & J. C. Wanser (Eds.), Social archaeology: beyond subsistence and dating (pp. 315–337). New York: Academic Press.

    Google Scholar 

  • Mt. Pleasant, J. (2006). The science behind the Three Sisters mound systems: an agronomic assessment of an indigeous agricultural system in the Northeast. In J. E. Staller, R. H. Tykot, & B. F. Benz (Eds.), Histories of Maize: multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of Maize (pp. 529–538). New York: Academic Press.

    Google Scholar 

  • National Research Council. (1989). Lost crops of the Incas: little-known plants of the Andes with promise for worldwide cultivation (Report of an ad hoc panel of the Advisory Committee on Technology Innovation Board on Science and Technology for International Development). Washington, D.C.: National Academy Press.

    Google Scholar 

  • Nordstrom, C. (1990). Evidence for the domestication of Chenopodium in the Andes (Report to the National Science Foundation, Paleoethnobotany Laboratory Reports #19). Berkeley: University of California.

    Google Scholar 

  • Palomino, G., Hernández, L. T., & Torres, E. (2008). Nuclear genome size and chromosome analysis in Chenopodium quinoa and C. berlandieri subsp. nuttalliae. Euphytica, 164, 221–230.

    Article  Google Scholar 

  • Pauketat, T. R., Kelly, L. S., Fritz, G. J., Lopinot, N. H. E. S., & Hargrave, E. (2002). The residues of feasting and public ritual at early Cahokia. American Antiquity, 67, 257–279.

    Article  Google Scholar 

  • Pearsall, D. (1992). The origins of plant cultivation in South America. In C. W. Cowan & P. J. Watson (Eds.), The origins of agriculture (pp. 173–205). Washington, D.C.: Smithsonian Institution Press.

    Google Scholar 

  • Planella, M. T., Lopez, M. L., & Bruno, M. C. (2014). La Domesticación y Distribución Prehistórica. In D. Bazile, D. Bertero, & C. Nieto (Eds.), State of the art report of Quinoa in the world in 2013: FAO (Santiago de Chile) y CIRAD. Montpellier: France.

    Google Scholar 

  • Planella, M. T., McRostie, V., & Falabella, F. (2010). El aporte arqueobotánico al conocimiento de los recursos vegetales en la población alfarera temprana del sitio El Mercurio. Actas del XVII Congreso Nacional de Arqueología Chilena, pp. 1255–1265.

    Google Scholar 

  • Planella, M. T., Scherson, R., & McRostie, V. (2011). Sitio El Plomo y nuevos registros de cultígenos iniciales en cazadores del Arcaico IV en Alto Maipo, Chile Central. Chungará, 43(2), 189–202.

    Article  Google Scholar 

  • Popenoe, H., King, S. R., León, J. R., & Kalinowski, L. S. (1989). Lost crops of the Incas: Little-known plants of the Andes with promise for worldwide cultivation. Washington, D.C.: National Academy Press.

    Google Scholar 

  • Raney, J. A., Reynolds, D. J., Elzinga, D. B., Page, J., Udall, J. A., Jellen, E. N., et al. (2014). Transcriptome analysis of drought induced stress in Chenopodium quinoa. American Journal of Plant Sciences, 5, 338–357.

    Article  Google Scholar 

  • Reynolds, D. J. (2009). Genetic dissection of triterpenoid saponin production in Chenopodium quinoa using microarray analysis. M.Sc. Thesis. Provo, UT: Brigham Young University.

    Google Scholar 

  • Rieseberg, L. H., & Harter, A. V. (2006). Molecular evidence and the evolutionary history of the domesticated sunflowers. In T. Motley (Ed.), Darwin’s harvest: new approaches to the origins, evolution, and conservation of crops: a broad taxonomic and geographic survey (pp. 31–48). New York: Columbia University Press.

    Google Scholar 

  • Rigsby, C. A., Baker, P. A., & Aldenderfer, M. S. (2003). Fluvial history of the Rio Ilave valley, Peru, and its relationship to climate and human history. Palaeogeography, Palaeoclimatology, Palaeoecology, 194, 165–185.

    Article  Google Scholar 

  • Roberts, K. M. (1996). Intimations of early Mississippian political, domestic, and ecological environments at Cahokia: an analysis of plant remains from Sub-Mound 51. M.A. Thesis. St. Louis, MO: Department of Anthropology, Washington University.

    Google Scholar 

  • Rose, C. E. (2001). Household and community organization of a Formative Period, Bolivian settlement. Ph. D. Dissertation. Pittsburgh, PA: Department of Anthropology, University of Pittsburgh.

    Google Scholar 

  • Rowe, J. H. (1945). Absolute chronology in the Andean area. American Antiquity, 10, 265–284.

    Article  Google Scholar 

  • Simon, M. L. (2000). Regional variations in plant use strategies in the Midwest during the Late Woodland. In T. E. Emerson, D. L. McElrath, & A. C. Fortier (Eds.), Late Woodland societies: tradition and transformation across the midcontinent (pp. 37–75). Lincoln: University of Nebraska Press.

    Google Scholar 

  • Simon, M. L., & Parker, K. E. (2006). Prehistoric plant use in the American Bottom: new thoughts and interpretations. Southeastern Archaeology, 25, 212–257.

    Google Scholar 

  • Smith, B. D. (1985a). Chenopodium berlandieri ssp. jonesianum: evidence for a Hopewellian domesticate from Ash Cave, Ohio. Southeastern Archaeology, 4, 107–133.

    Google Scholar 

  • Smith, B. D. (1985b). The role of Chenopodium as a domesticate in the pre-maize garden systems of the eastern United States. Southeastern Archaeology, 4, 51–72.

    Google Scholar 

  • Smith, B. D. (1992a). Hopewellian farmers of eastern North America. In B. D. Smith (Ed.), Rivers of change: essays on early agriculture in eastern North America (pp. 201–248). Washington, D.C.: Smithsonian Institution Press.

    Google Scholar 

  • Smith, B. D. (1992b). In search of Choupihoul, the mystery grain of the Natchez. In B. D. Smith (Ed.), Rivers of change: essays on early agriculture in eastern North America (pp. 239–264). Washington, D.C.: Smithsonian Institution Press.

    Google Scholar 

  • Smith, B. D. (2006a). Eastern North America as an independent center of plant domestication. Proceedings of the National Academy of Sciences, 103, 12223–12228.

    Article  Google Scholar 

  • Smith, B. D. (2006b). Household, community, and subsistence in Hopewell research. In D. K. Charles & J. E. Buikstra (Eds.), Recreating Hopewell (pp. 491–509). Gainesville: University Press of Florida.

    Google Scholar 

  • Smith, B. D. (2011). The cultural context of plant domestication in eastern North America. Current Anthropology, 52(Supplement 4), S471–S484.

    Article  Google Scholar 

  • Smith, B. D. (2014). The domestication of Helianthus annuus L. (sunflower). Vegetation History and Archaeobotany, 23, 57–74.

    Article  Google Scholar 

  • Smith, B. D., & Yarnell, R. A. (2009). Initial formation of an indigenous crop complex in eastern North America at 3800 B.P. Proceedings of the National Academy of Sciences, 106, 6561–6566.

    Article  Google Scholar 

  • Spooner, D. M., McLean, K., Ramsay, G., Waugh, R., & Bryan, G. J. (2005). A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proceedings of the National Academy of Sciences, 102, 14694–14699.

    Article  Google Scholar 

  • Stanish, C. (1994). The hydraulic hypothesis revisited: Lake Titicaca basin raised fields in theoretical perspective. Latin American Antiquity, 5, 312–332.

    Article  Google Scholar 

  • Tapia, M. E. (2015). The long journey of Quinoa: who wrote its history? In D. Bazile, D. Bertero, & C. Nieto (Eds.), State of the art report of Quinoa in the world in 2013 (pp. 3–9). Montpellier, France: FAO (Santiago de Chile) y CIRAD.

    Google Scholar 

  • Towle, M. A. (1961). The ethnobotany of pre-Columbian Peru (Viking Publications in Anthropology 30). Chicago: Aldine.

    Google Scholar 

  • Wahl, H. A. (1952). A preliminary study of the genus Chenopodium in North America. Bartonia, 27, 1–46.

    Google Scholar 

  • Walsh, B., & Emshwiller, E. (2011). Phylogeny of American Chenopodium species with focus on origins of the domesticated taxa. St. Louis: Paper presented at the Annual Meeting of the Botanical Society of America.

    Google Scholar 

  • Wilson, H. D. (1981). Domesticated Chenopodium of the Ozark Bluff Dwellers. Economic Botany, 35, 233–239.

    Article  Google Scholar 

  • Wilson, H. D. (1988). Quinua biosystematics I: domesticated populations. Economic Botany, 42, 461–477.

    Article  Google Scholar 

  • Wilson, H. D. (1990). Quinua and relatives (Chenopodium subsect. Cellulata). Economic Botany, 44(suppl), 92–110.

    Article  Google Scholar 

  • Wilson, H. D., & Heiser, C. B., Jr. (1979). The origin and evolutionary relationships of “Huauzontle” (Chenopodium nuttalliae Safford), domesticated chenopod of Mexico. American Journal of Botany, 66, 198–206.

    Article  Google Scholar 

  • Wright, M. F., Hastorf, C. A., & Lennstrom, H. A. (2003). Pre-Hispanic agriculture and plant use at Tiwanaku: social and political implications. In A. Kolata (Ed.), Tiwanaku and its hinterland: archaeological and paleoecological investigations of an Andean civilization (Vol. 2, pp. 384–403). Urban and Rural Archaeology. Washington, D.C.: Smithsonian Institution Press.

    Google Scholar 

  • Yarnell, R. A. (1974). Plant food and cultivation of the Salts Cavers. In P. J. Watson (Ed.), Archaeology of the Mammoth Cave Area (pp. 113–122). New York: Academic Press.

    Google Scholar 

Download references

Acknowledgements

We are deeply indebted to Christine Hastorf for her contributions that not only generated a great deal of the archaeological material we discuss, but also established the framework for integrating archaeobotanical data with everything else. Chenopod research benefits from Christine’s vision of food and regional cuisines as central to and inseparable from considerations of identity, status, exchange, and the development of politically complex societies. As a project P.I., lab director, teacher, and theoretical innovator, Christine influenced, inspired, and enabled much of this research. We also sincerely thank Dr. Lynne Rouse for drafting the Fig. 3.1 map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayle J. Fritz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fritz, G.J., Bruno, M.C., Langlie, B.S., Smith, B.D., Kistler, L. (2017). Cultigen Chenopods in the Americas: A Hemispherical Perspective. In: Sayre, M., Bruno, M. (eds) Social Perspectives on Ancient Lives from Paleoethnobotanical Data. Springer, Cham. https://doi.org/10.1007/978-3-319-52849-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52849-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52847-2

  • Online ISBN: 978-3-319-52849-6

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics