Skip to main content

Towards an Understanding of Hole Superconductivity

  • Chapter
  • First Online:
High-Tc Copper Oxide Superconductors and Related Novel Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 255))

Abstract

From the very beginning K. Alex Müller emphasized that the materials he and George Bednorz discovered in 1986 were hole superconductors. Here I would like to share with Alex and others what I believe to be the key reason for why high T c cuprates as well as all other superconductors are hole superconductors, which I only came to understand a few months ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.A. Müller, J. Wieland, Apparatur zur Messung des Hall-Effektes und der magnetischen Widerstandsänderung mit. Wechselstrom. Helv. Phys. Acta 27, 690 (1954)

    Google Scholar 

  2. J. G. Bednorz, K. A. Müller, Proceedings of 18th International Conference on Low Temperature Physics, Kyoto. Jpn. J. Appl. Phys. 26(Supplement 26-3), 1781 (1987), http://iopscience.iop.org/article/10.7567/JJAPS.26S3.1781/meta

  3. K. A. Müller, J. G. Bednorz, 237, 1133 (1987)

    Google Scholar 

  4. K. A. Müller, in “Mechanisms of High Temperature Superconductivity”, Proceedings of the 2nd NEC Symposium, Hakone, Japan, 24–27 October 1988, p. 2

    Google Scholar 

  5. H. Takagi, Ref. [4], p. 238

    Google Scholar 

  6. Private communication

    Google Scholar 

  7. Y. Tokura, H. Takagi, S. Uchida, A superconducting copper oxide compound with electrons as the charge carriers. Nature (London) 377(345) (1989)

    Google Scholar 

  8. W. Jiang et al., Anomalous transport properties in superconducting Nd 1.85 Ce 0.15 CuO 4 ± δ . Phys. Rev. Lett. 73, 1291 (1994)

    Article  ADS  Google Scholar 

  9. P. Fournier et al., Thermomagnetic transport properties of Nd 1.85 Ce 0.15 CuO 4 + δ films: evidence for two types of charge carriers. Phys. Rev. B 56, 14149 (1997)

    Article  ADS  Google Scholar 

  10. Y. Dagan, R.L. Greene, ‘Hole superconductivity in the electron-doped superconductor Pr 2 − x Ce x CuO 4. Phys. Rev. B 76, 024506 (2007)

    Article  ADS  Google Scholar 

  11. K. Kikoin, B. Lasarew, Hall effect and superconductivity. Nature 129, 57 (1932)

    Article  ADS  Google Scholar 

  12. K. Kikoin, B. Lasarew, Physik. Zeits. d. Sowjetunion 3, 351 (1933)

    Google Scholar 

  13. L. Brillouin, ‘Le champ self-consistent, pour des electrons lies; la supraconductibilite’, Jour. de Phys. et le Rad. VII, Tome IV, A. Papapetrou, ‘Bemerkungen zur Supraleitung’, Z. Phys. 92, 513 (1934)

    Google Scholar 

  14. M. Born, K.C. Cheng, Theory of superconductivity. Nature 161, 968 (1948)

    Article  ADS  MATH  Google Scholar 

  15. R.P. Feynman, Superfluidity and superconductivity. Rev. Mod. Phys. 29, 205 (1957)

    Article  ADS  Google Scholar 

  16. I.M. Chapnik, On a possible criterion for superconductivity. Sov. Phys. Dokl. 6, 988 (1962)

    ADS  Google Scholar 

  17. I.M. Chapnik, On the empirical correlation between the superconducting T c and the Hall coefficient. Phys. Lett. A 72, 255 (1979)

    Article  ADS  Google Scholar 

  18. J.E. Hirsch, Hole superconductivity. Phys. Lett. A 134, 451 (1989)

    Article  ADS  Google Scholar 

  19. References in http://physics.ucsd.edu/~jorge/hole.html

    Google Scholar 

  20. W. Heisenberg, Zum Paulischen Ausschlie ungsprinzip. Ann. Phys. 402, 888 (1931)

    Article  MATH  Google Scholar 

  21. R. Peierls, Elektronentheorie der Metalle. Ergebnisse der exakten Naturwissenschaften 11, 284 (1932)

    ADS  MATH  Google Scholar 

  22. R. Peierls, Zur Theorie der galvanomagnetischen Effekte. für Physik 53, 255 (1929)

    Article  ADS  MATH  Google Scholar 

  23. J.E. Hirsch, Why holes are not like electrons. II. The role of the electron-ion interaction. Phys. Rev. B 71, 104522 (2005)

    Article  ADS  Google Scholar 

  24. J.G. Bednorz, K.A. Müller, Possible high T c superconductivity in the Ba - La- Cu- 0 system. Z. Phys. B 64, 189 (1986)

    Article  ADS  Google Scholar 

  25. A. Bussmann-Holder, H. Keller, K.A. Müller, in Superconductivity in Complex Systems. Evidences for Polaron Formation in Cuprates (Springer, Berlin, 2005)

    Google Scholar 

  26. H. Keller, A. Bussmann-Holder, K.A. Müller, Jahn - Teller physics and high-T c superconductivity. Mater. Today 11, 38 (2008)

    Article  Google Scholar 

  27. J.E. Hirsch, S. Tang, Hole superconductivity in oxides. Solid State Commun. 69, 987 (1989)

    Article  ADS  Google Scholar 

  28. J.E. Hirsch, , in ‘Electron-hole Asymmetric Polarons’, ed. by E. K. H. Salje, A. S. Alexandrov and W. Y. Liang. “Polarons and Bipolarons in High-T c Superconductors and Related Materials” (Cambridge University Press, Cambridge, 1995), p. 234

    Google Scholar 

  29. J.E. Hirsch, Physica C 201, 347 (1992)

    Article  ADS  Google Scholar 

  30. J.E. Hirsch, Polaronic superconductivity in the absence of electron-hole symmetry. Phys. Rev. B 47, 5351 (1993)

    Article  ADS  Google Scholar 

  31. J.E. Hirsch, Dynamic Hubbard model. Phys. Rev. Lett. 87, 206402 (2001)

    Article  ADS  Google Scholar 

  32. J.E. Hirsch, Dynamic Hubbard model: kinetic energy driven charge expulsion, charge inhomogeneity, hole superconductivity and Meissner effect. Phys. Scr. 88, 035704 (2013)

    Article  ADS  Google Scholar 

  33. J.E. Hirsch, Why holes are not like electrons: a microscopic analysis of the differences between holes and electrons in condensed matter. Phys. Rev. B 65, 184502 (2002)

    Article  ADS  Google Scholar 

  34. J.E. Hirsch, F. Marsiglio, Superconducting state in an oxygen hole metal. Phys. Rev. B 39, 11515 (1989)

    Article  ADS  Google Scholar 

  35. J.E. Hirsch, F. Marsiglio, On the dependence of superconducting T c on carrier concentration. Phys. Lett. A 140, 122 (1989)

    Article  ADS  Google Scholar 

  36. X.Q. Hong, J.E. Hirsch, Superconductivity in the transition-metal series. Phys. Rev. B 46(14), 702 (1992)

    Google Scholar 

  37. B.T. Matthias, Transition temperatures of superconductors. Phys. Rev. 92, 874 (1953)

    Article  ADS  Google Scholar 

  38. B.T. Matthias, Empirical relation between superconductivity and the number of valence electrons per atom. Phys. Rev. 97, 74 (1955)

    Article  ADS  Google Scholar 

  39. Y. Guo, J.M. Langlois, W.A. Goddard III, Electronic structure and valence-bond band structure of cuprate superconducting materials. Science 239, 896 (1988)

    Article  ADS  Google Scholar 

  40. J.E. Hirsch, Effect of orbital relaxation on the band structure of cuprate superconductors and implications for the superconductivity mechanism. Phys. Rev. B 90, 184515 (2014)

    Article  ADS  Google Scholar 

  41. A. Shengelaya, K.A. Müller, The intrinsic heterogeneity of superconductivity in the cuprates. EPL 109, 27001 (2015)

    Article  ADS  Google Scholar 

  42. F. Marsiglio, J.E. Hirsch, Hole superconductivity and the high-T c oxides. Phys. Rev. B 41, 6435 (1990)

    Article  ADS  Google Scholar 

  43. J.E. Hirsch, ‘Materials and mechanisms of hole superconductivity’, Physica C 472, 78 (2012) and references therein

    Google Scholar 

  44. J.E. Hirsch, M.B. Maple, F. Marsiglio, Superconducting materials: conventional, unconventional and undetermined. Physica C 514(Special Issue), 1–444 (2015)

    Google Scholar 

  45. J.E. Hirsch, M.B. Maple, F. Marsiglio, Superconducting materials classes: Introduction and overview. Physica C 514, 1 (2015)

    Article  ADS  Google Scholar 

  46. J.E. Hirsch, Role of reduction process in the transport properties of electron-doped oxide superconductors. Physica C 243, 319 (1995)

    Article  ADS  Google Scholar 

  47. J.E. Hirsch, Hole superconductivity in MgB 2: a high T c cuprate without Cu. Phys. Lett. A 282, 392 (2001)

    Article  ADS  Google Scholar 

  48. J.E. Hirsch, F. Marsiglio, Electron-phonon or hole superconductivity in MgB 2? Phys. Rev. B 64, 144523 (2001)

    Article  ADS  Google Scholar 

  49. F. Marsiglio, J.E. Hirsch, Hole superconductivity in arsenic—iron compounds. Physica C 468, 1047 (2008)

    Article  ADS  Google Scholar 

  50. E. Bustarret, Superconductivity in doped semiconductors. Physica C 514, 36 (2015)

    Article  ADS  Google Scholar 

  51. J.E. Hirsch, J.J. Hamlin, Why non-superconducting metallic elements become superconducting under high pressure. Physica C 470, S937 (2010)

    Article  ADS  Google Scholar 

  52. Jing Guo et al, ‘The vital role of hole-carriers for superconductivity in pressurized black phosphorus’, arXiv:1611.03330 (2016)

    Google Scholar 

  53. J.E. Hirsch, F. Marsiglio, Hole superconductivity in H 2 S and other sulfides under high pressure. Physica C 511, 45 (2015)

    Article  ADS  Google Scholar 

  54. A.A. Manuel et al., Contribution to the determination of the Fermi surface of V 3 Si by positron annihilation. Solid State Commun. 31, 955 (1979)

    Article  ADS  Google Scholar 

  55. S. Berko, M. Weger, Investigation of the Fermi surface of V 3 Si by means of positron annihilation. Phys. Rev. Lett. 24, 55 (1970)

    Article  ADS  Google Scholar 

  56. L. Hoffmann, A.K. Singh, H. Takei, N. Toyota, Fermi surfaces in Nb 3 Sn through positron annihilation. J. Phys. F 18, 2605 (1988)

    Article  ADS  Google Scholar 

  57. J.E. Hirsch, Bond-charge repulsion and hole superconductivity. Physica C 158, 326 (1989)

    Article  ADS  Google Scholar 

  58. J.E. Hirsch, Coulomb attraction between Bloch electrons. Phys. Lett. A 138, 83 (1989)

    Article  ADS  Google Scholar 

  59. J.E. Hirsch, Correlations between normal-state properties and superconductivity. Phys. Rev. B 55, 9007 (1997)

    Article  ADS  Google Scholar 

  60. J.E. Hirsch, The missing angular momentum of superconductors. J. Phys. Condens. Matter 20, 235233 (2008)

    Article  ADS  Google Scholar 

  61. J.E. Hirsch, On the reversibitity of the Meissner effect and the angular momentum puzzle. Ann. Phys. (New York) 373, 230 (2016)

    Article  ADS  Google Scholar 

  62. J.E. Hirsch, Momentum of superconducting electrons and the explanation of the Meissner effect. Phys. Rev. B 95, 014503 (2017)

    Article  ADS  Google Scholar 

  63. J.E. Hirsch, The disappearing momentum of the supercurrent in the superconductor to normal phase transformation. Europhys. Lett. 114, 57001 (2016)

    Article  ADS  Google Scholar 

  64. J.F. Schooley et al., Phys. Rev. Lett. 14, 305 (1965)

    Article  ADS  Google Scholar 

  65. A. Bussmann-Holder, A.R. Bishop, A. Simon, SrTiO 3: from quantum paraelectric to superconducting. Ferroelectrics 400, 19 (2010)

    Article  Google Scholar 

  66. X. Lin, Z. Zhu, B. Fauque, K. Behnia, Fermi surface of the most dilute superconductor. Phys. Rev. X 3, 021002 (2013)

    Google Scholar 

  67. O.F. Schirmer, W. Berlinger, K.A. Müller, Holes trapped near Mg 2+ and Al 3+ impurities in SrTiO 3. Solid State Commun. 18, 1505 (1976)

    Article  ADS  Google Scholar 

  68. J. E. Hirsch, in ‘Electron-hole Asymmetry: The Key to Superconductivity’, ed. by J. Ashkenazi et al. “High Temperature Superconductivity: Physical Properties, Microscopic Theory, and Mechanisms” (Springer, New York, 1991), p. 295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Hirsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hirsch, J.E. (2017). Towards an Understanding of Hole Superconductivity. In: Bussmann-Holder, A., Keller, H., Bianconi, A. (eds) High-Tc Copper Oxide Superconductors and Related Novel Materials. Springer Series in Materials Science, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-319-52675-1_9

Download citation

Publish with us

Policies and ethics