Skip to main content

Asymmetries in Competitive Location Models on the Line

  • Chapter
  • First Online:
Spatial Interaction Models

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 118))

Abstract

This paper first presents a standard competitive duopoly location model on a linear market and derives an equilibrium solution as well as a solution for the sequential von Stackelberg game. The heart of the contribution then investigates scenarios, in which the duopolists face or follow asymmetric situations or strategies. In particular, we examine situations, in which the duopolists have different objectives, models, in which firms apply different pricing policies, and instances, in which the competitors have different capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, S.P.: Equilibrium existence in the linear model of spatial competition. Economica 55 (220), 479–491 (1988)

    Article  Google Scholar 

  2. Anderson, S.P., De Palma, A., Thisse, J.-F.: Social surplus and profitability under different spatial pricing policies. South. Econ. J. 58, 934–949 (1992)

    Article  Google Scholar 

  3. Ashtiani, M.G.: Competitive location: a state-of-art review. Int. J. Ind. Eng. Comput. 7, 1–18 (2016)

    Google Scholar 

  4. Ben-Porat, O., Tennenholtz, M.: Multi-unit facility location games. http://arxiv.org/pdf/1602.03655.pdf (2016). Accessed 9 Sept 2016

  5. Berman, O., Hodgson, M.J., Krass. D.: Flow-interception problems. In: Drezner, Z. (ed.) Facility Location: A Survey of Applications and Methods, pp. 389–426. Springer, New York (1995)

    Google Scholar 

  6. Bhadury, J.: Competitive location under uncertainty of costs. J. Reg. Sci. 36 (4), 527–554 (1996)

    Article  MathSciNet  Google Scholar 

  7. Bhadury, J., Eiselt, H.A.: Reachability of locational Nash equilibria. Oper. Res. Spektrum 20 (2), 101–107 (1998)

    Article  MATH  Google Scholar 

  8. Biscaia, R., Mota, I.: Models of spatial competition: a critical review. Pap. Reg. Sci. 92 (4), 851–871 (2013)

    Article  Google Scholar 

  9. Blanquero, R., Hendrix, E.M.T., Carrizosa, E.: Locating a competitive facility in the plane with a robustness criterion. Eur. J. Oper. Res. 215 (1), 21–24 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner, S.: Hotelling games with three, four, and more players. J. Reg. Sci. 45 (4), 851–864 (2005)

    Article  Google Scholar 

  11. Brenner, S.: Location (Hotelling) games and applications. In: Wiley Encyclopedia of Operations Research and Management Science (2011). doi:10.1002/9780470400531.eorms0477

    Google Scholar 

  12. Brown, S.: Retail location theory: the legacy of Harold Hotelling. J. Retail. 65 (4), 450–470 (1989)

    Google Scholar 

  13. Cai, D., Kobayashi, S.: Lobbying on entry under spatial competition: the case of asymmetric production costs. http://www.webmeets.com/files/papers/earie/2013/257/Cai_2013.pdf (2013). Accessed 9 Sept 2016

  14. Casado-Izaga, E.J.: Tax effects in a model of spatial price discrimination: a note. J. Econ. 99 (3), 277–282 (2010)

    Article  MATH  Google Scholar 

  15. D’Aspremont, C., Gabszewicz, J.J., Thisse, J.-F.: On Hotelling’s Stability in competition. Econometrica 47, 1145–1150 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. DePalma, A., Ginsburgh, V., Thisse, J.-F.: On existence of locational equilibria in the 3-firm Hotelling problem. J. Ind. Econ. 36, 245–252 (1987)

    Article  Google Scholar 

  17. Drezner, T.: Locating a single new facility among existing, unequally attractive facilities. J. Reg. Sci. 34 (2), 237–252 (1994)

    Article  Google Scholar 

  18. Drezner, T.: A review of competitive facility location in the plane. Logist. Res. 7/1, 1–12 (2014)

    Google Scholar 

  19. Eaton, B.C., Lipsey, R.G.: The principle of minimum differentiation reconsidered: some new developments in the theory of spatial competition. Rev. Econ. Stud. 42 (1), 27–49 (1975)

    Article  MATH  Google Scholar 

  20. Eiselt, H.A.: Different pricing policies in Hotelling’s duopoly model. Cah. CERO 33, 195–205 (1991)

    MATH  Google Scholar 

  21. Eiselt, H.A.: A Hotelling model with different weights and moving costs. Belg. J. Oper. Res. Stat. Comput. Sci. 30 (2), 3–20 (1990)

    MATH  Google Scholar 

  22. Eiselt, H.A.: Perception and information in a competitive location model. Eur. J. Oper. Res. 108 (1), 94–105 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eiselt, H.A.: Equilibria in competitive location models, Chap. 7 In: Eiselt, H.A., Marianov, V. (eds.) Foundations of Location Analysis. Springer, Berlin/Heidelberg (2011)

    Google Scholar 

  24. Eiselt, H.A., Bhadury, J.: Stability of Nash equilibria in locational games. Recherche opérationnelle/Oper. Res. 29 (1), 19–33 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Eiselt, H.A., Laporte, G.: Trading areas of facilities with different sizes. Recherche Operationnelle/Oper. Res. 22 (1), 33–44 (1988)

    MathSciNet  MATH  Google Scholar 

  26. Eiselt, H.A., Laporte, G.: Location of a new facility on a linear market in the presence of weights. Asia Pac. J. Oper. Res. 5 (2), 160–165 (1988)

    Google Scholar 

  27. Eiselt, H.A., Laporte, G.: The existence of equilibria in the 3-facility Hotelling model on a tree. Transp. Sci. 27 (1), 39–43 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Eiselt, H.A., Laporte, G., Thisse, J.-F.: Competitive location models: a framework and bibliography. Transp. Sci. 27 (1), 44–54 (1993)

    Article  MATH  Google Scholar 

  29. Eleftheriou, K., Michelacakis, N.: A unified model of spatial price discrimination. https://mpra.ub.uni-muenchen.de/72106/1/MPRA_paper_72106.pdf (2016). Accessed 9 Sept 2016

  30. Esteves, R.-B.: Price discrimination with private and imperfect information. Scand. J. Econ. 116 (3), 766–796 (2014)

    Article  Google Scholar 

  31. Fernández, J., Hendrix, E.M.T.: Recent insights in Huff-like competitive facility location and design. Eur. J. Oper. Res. 227, 581–584 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fournier, G., Scarsini, M.: Hotelling games on networks: existence and efficiency of equilibria. http://arxiv.org/abs/1601.07414 (2016). Accessed 9 Sept 2016

  33. Gabszewicz, J.J., Thisse, J.-F.: Spatial competition and the location of firms. Fundam. Pure Appl. Econ. 5, 1–71 (1986)

    Google Scholar 

  34. Ghosh, A., Buchanan, B.: Multiple outlets in a duopoly: a first entry paradox. Geogr. Anal. 20, 111–121 (1988)

    Article  Google Scholar 

  35. Guo, W.-C., Lai, F.-C.: Spatial competition with quadratic transport costs and one online firm. Ann. Reg. Sci. 52 (1), 309–324 (2014)

    Article  Google Scholar 

  36. Hakimi, S.L.: On locating new facilities in a competitive environment. Eur. J. Oper. Res. 12, 29–35 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hakimi, S.L.: Locations with spatial interactions: competitive locations & games. In: Francis, R.L., Mirchandani, P.B. (eds.) Discrete Location Theory. Wiley, New York (1990)

    Google Scholar 

  38. Hamoudi, H., Moral, M.J.: Equilibrium existence in the linear model: concave versus convex transportation costs. Pap. Reg. Sci. 84 (2), 201–219 (2005)

    Article  Google Scholar 

  39. Herr, A.: Quality and welfare in a mixed duopoly with regulated prices: the case of a public and a private hospital. Ger. Econ. Rev. 12 (4), 422–437 (2011)

    Article  MathSciNet  Google Scholar 

  40. Hodgson, M.J.: The location of public facilities intermediate to the journey to work. Eur. J. Oper. Res. 6, 199–204 (1981)

    Article  Google Scholar 

  41. Hotelling, H.: Stability in competition. Econ. J. 39, 41–57 (1929)

    Google Scholar 

  42. Huang, R., Menezes, M,B.C., Kim, S.: The impact of cost uncertainty on the location of a distribution center. Eur. J. Oper. Res. 218 (2), 401–407 (2012)

    Google Scholar 

  43. Huff, D.L.: Defining and estimating a trade area. J. Mark. 28, 34–38 (1964)

    Article  Google Scholar 

  44. Hurter, A.P. Jr., Lederer, P.J.: Spatial duopoly with discriminatory pricing. Reg. Sci. Urban Econ. 15, 541–553 (1985)

    Article  Google Scholar 

  45. Karakitsiou, A.: Modeling Discrete Competitive Facility Location. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  46. Konur, D., Geunes, J.: Competitive multi-facility location games with non-identical firms and convex traffic congestion costs. Transp. Res. E 48 (1), 373–385 (2012)

    Article  Google Scholar 

  47. Kress, D., Pesch, E.: Sequential competitive location on networks. Eur. J. Oper. Res. 217 (3), 483–499 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Küçükaydin, H., Aras, N., Altinel, I.K.: Competitive facility location problem with attractiveness adjustment of the follower: a bilevel programming model and its solution. Eur. J. Oper. Res. 208 (3), 206–220 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lederer, P.J.: Competitive delivered pricing by mail-order and internet retailers. Netw. Spat. Econ. 11 (2), 315–342 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lederer, P.J., Hurter, A.P. Jr.: Competition of firms: discriminatory pricing and location. Econometrica 54 (3), 623–640 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ledvina, A., Sircar, R.: Oligopoly games under asymmetric costs and an application to energy production. Math. Financ. Econ. 6 (4), 261–293 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lerner, A.P., Singer, H.W.: Some notes on duopoly and spatial competition. J. Polit. Econ. 45, 145–186 (1937)

    Article  Google Scholar 

  53. Liang, W.-J., Mai, C.-C.: Optimal trade policy with horizontal differentiation and asymmetric costs. Rev. Dev. Econ. 14 (2), 302–310 (2010)

    Article  Google Scholar 

  54. Lu, Y.: Hotelling’s location model in mixed duopoly. Econ. Bull. 8 (1), 1–10 (2006)

    Google Scholar 

  55. Marianov, V., Eiselt, H.A.: Agglomeration in competitive location models. Ann. Oper. Res. 246, 31–55 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. Matsumura, T., Matsushima, N., Stamatopoulos, G.: Location equilibrium with asymmetric firms: the role of licensing. J. Econ. 99 (3), 267–276 (2010)

    Article  MATH  Google Scholar 

  57. Miller, T.C., Friesz, T.L., Tobin, R.L.: Equilibrium Facility Location on Networks. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  58. Nash, J.F. Jr.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. U. S. A. 36 (1), 48–59 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  59. Pierce, A., Sen, D.: Outsourcing versus technology transfer: Hotelling meets Stackelberg. J. Econ. 111 (3), 263–287 (2014)

    Article  MATH  Google Scholar 

  60. Pinto, A.A., Parreira, T.: Maximal differentiation in the Hotelling model with uncertainty. In: Pinto, A.A., Zilberman, D. (eds.) Modeling, Dynamics, Optimization, and Bioeconomics I. Proceedings in Mathematics & Statistics, vol. 73, pp. 585–600. Springer, Cham (2014)

    Google Scholar 

  61. Plastria, F.: Static competitive facility location: an overview of optimization approaches. Eur. J. Oper. Res. 129, 461–470 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  62. Prescott, E.C., Visscher, M.: Sequential location among firms with foresight. Bell J. Econ. 8 (2), 378–393 (1977)

    Article  Google Scholar 

  63. Reilly, W.J.: The Law of Retail Gravitation. Knickerbocker, New York (1931)

    Google Scholar 

  64. Rothschild, R.: A note on the effect of sequential entry on choice of location. J. Ind. Econ. 24 (4), 313–320 (1976)

    Article  Google Scholar 

  65. Rusk, J.G., Weisberg, H.F.: Perceptions of presidential candidates: implications for electoral change, Chap. 21 In: Niemi, R.G., Weisberg, H.F. (eds.) Controversies in American Voting Behavior, pp. 370–388. WH Freeman and Co., San Francisco (1976)

    Google Scholar 

  66. Russell, J.E.: Using a retail location game to explore Hotelling’s principle of minimum differentiation. Bus. Educ. Innov. J. 5 (2), 48–52 (2013)

    Google Scholar 

  67. Selten, R.: Reexamination of the perfectness concept for equilibrium points in extensive games. Int. J. Game Theory 4, 25–55 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  68. Shaked, A.: Non-existence of equilibrium for the two-dimensional three-firms location problem. Rev. Econ. Stud. 42 (1), 51–56 (1975)

    Article  MATH  Google Scholar 

  69. Shaked, A.: Existence and computation of mixed strategy Nash equilibrium for 3-firms location problem. J. Ind. Econ. 31 (1–2), 93–96 (1982)

    Article  Google Scholar 

  70. Smithies, A.: Optimum location in spatial competition. J. Polit. Econ. 49 (3), 423–439 (1941)

    Article  Google Scholar 

  71. Stevens, B.H.: An application of game theory to a problem in location strategy. Pap. Proc. Reg. Sci. Assoc. 7 (1), 143–157 (1961)

    Article  Google Scholar 

  72. Teitz, M.B.: Locational strategies for competitive systems. J. Reg. Sci. 8 (2), 135–138 (1968)

    Article  Google Scholar 

  73. Thisse, J.-F., Vives, X.: On the strategic choice of spatial price policy. Am. Econ. Rev. 78 (1), 122–137 (1988)

    Google Scholar 

  74. Thisse, J.-F., Wildasin, D.E.: Optimal transportation policy with strategic locational choice. Reg. Sci. Urban Econ. 25, 395–410 (1995)

    Article  Google Scholar 

  75. Vogel, J.: Spatial price discrimination with heterogeneous firms. Working Paper 14978. National Bureau of Economic Research, Cambridge, MA. http://www.nber.org/papers/w14978 (2009). Accessed 9 Sept 2016

  76. von Stackelberg, H.: The Theory of the Market Economy. Translated from the original German work Grundlagen der theoretischen Volkswirtschaftslehre, 1943, by Peacock AT. William Hodge, London (1952)

    Google Scholar 

  77. Yasuda, Y.: Instability in the Hotelling’s non-price spatial competition model. Theor. Econ. Lett. 3, 7–10 (2013)

    Article  Google Scholar 

  78. Younies, H., Eiselt, H.A.: Sequential location models, Chap. 8 In: Eiselt, H.A., Marianov, V. (eds.) Foundations of Location Analysis. Springer, Berlin/Heidelberg (2011)

    Google Scholar 

  79. Zhang, Z.J.: Price-matching policy and the principle of minimum differentiation. J. Ind. Econ. 43, 287–299 (1995)

    Article  Google Scholar 

  80. Ziss, S.: Entry deterrence, cost advantage and horizontal product differentiation. Reg. Sci. Urban Econ. 23, 523–543 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This work was in part supported by the Institute Complex Engineering Systems, through grants ICM-MIDEPLAN P-05-004-F and CONICYT FB0816.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Eiselt .

Editor information

Editors and Affiliations

Appendix

Appendix

Given that firm A locates at the center of the market, i.e., \(a = \frac{1} {2}\ell\), firm B’s market area is symmetric about \(\frac{1} {2}\ell\). Suppose that firm B’s market area is d units near both ends of the market. (We deviate from some of the notation in the paper in order to simplify matters.) As usual, B is located b units from the right end of the market. This situation is shown in Fig. 7.

Fig. 7
figure 7

Transportation cost of a firm that uses delivered prices and whose market share extends d from both ends of the market, the form locates outside its market area

Firm B’s transportation costs are then the two trapezoids (D, E) and (F, G). Elementary algebra indicates that the areas of D, E, F, and G are \(\frac{1} {2}td^{2}\), (bd)dt, \(\frac{1} {2}td^{2}\), and(bd)dt, respectively, so that the total cost (the total area) is (d)td. It is apparent that these costs are independent of b, the location of firm B. The scenario does not change as long as b ∈ [d, d].

Consider now the case, in which locates at a point b ≤ d (or, alternatively, b ≥ d). This situation is shown in Fig. 8.

Fig. 8
figure 8

Transportation cost of a firm that uses delivered prices and whose market share extends d from both ends of the market, the form locates inside its market area

Similar to the above analysis, we have the four areas H, I, J, and K, the sum of whose areas determine the transportation cost incurred by firm B. The areas are \(\frac{1} {2}d^{2}t\), (bd)td, \(\frac{1} {2}(d - b)^{2}t\), and \(\frac{1} {2}tb^{2}\), respectively, so that the area is − 2btd + ℓ t d + tb 2, which is dependent on b. The minimum is found at b = d, indicating that firm B best locates somewhere in its opponent’s market area.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Eiselt, H.A., Marianov, V. (2017). Asymmetries in Competitive Location Models on the Line. In: Mallozzi, L., D'Amato, E., Pardalos, P. (eds) Spatial Interaction Models . Springer Optimization and Its Applications, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-319-52654-6_6

Download citation

Publish with us

Policies and ethics