Skip to main content

Analysis of Dynamic Linear Memristor Device Models

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 701))

Abstract

The aim of this book chapter is to provide a comprehensive review report on the Memristor device. Development of linear model for memristor and analysis of memristor are the prime focus as its current requirement for high speed and low power circuits design. Detailed discussion about memristor device physics, structure, operation, mathematical modeling and TCAD simulations have been carried out for better understand of memristor. Moore’s law, the semiconductor industry’s obsession with the shrinking of transistors with the commensurate steady doubling on chip about every two years, has been a source of about 50 year technical and economic revolution. Numerous innovations by a large number of scientists and engineers have helped significantly to sustain Moore’s law since the beginning of the Integrated Circuit (IC) era. As the cost of computer power to the consumer reduces, the cost of production for producers to sustain Moore’s law follows an opposite trend, i.e. Research, Development, Manufacturing, and Test costs are increasing continuously with each new generation of chips. This had led to the reason for existence of Moore’s second law, also called Rock’s law, which is that the capital cost of a semiconductor fabrication also increases exponentially over time. The formation of memristor is a great achievement in semiconductor industry considering Moore’s second law because of its very easy and less steps of fabrication which is the reason for memristor being so cheap, while its nano scale size is new direction to attain Moore’s first law. Therefore, the modelling and simulation of memristor is essential to analyze more advanced features of memristor without spending a lot of money on fabrication and testing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bhushan, S., Khandelwal, S., & Raj, B. (2013). Analyzing different mode FinFET based memory cell at different power supply for leakage reduction, Proceedings of Seventh International Conference on Bio-Inspired Computing.

    Google Scholar 

  • Biolek, Z., Biolek, D., & Biolkova, V. (2009). SPICE model of memristor with non-linear dopant drift. Radioengineering, 18(2), 210–214.

    Google Scholar 

  • Chua, L. O. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5).

    Google Scholar 

  • Chua, L. O., & Kang, S. (1976). Memristive devices and systems. Proceedings of the IEEE, 64(2), 209–223.

    Article  MathSciNet  Google Scholar 

  • da Costa, H. J. B., de Assis Brito Filho, F., & de Araujo do Nascimento, P. I. (2012). Memristor behavioural modeling and simulations using verilog-AMS, Third Latin American Symposium on Circuits and Systems IEEE, (pp. 1–4).

    Google Scholar 

  • Dennard, R. (1968). Field-effect transistor memory, US 3387286, issued 4 June 1968 (filed 14 July 1967).

    Google Scholar 

  • Fuechsle, M., Miwa, J. A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L. C. L., Klimeck, G., & Simmons, M. Y. (2012). A single-atom transistor, Nature Nanotechnology, 7, 242–246.

    Google Scholar 

  • Gergel-Hackett, N., Hamadani, B., Dunlap, B., Suehle, J., Richter, C., Hacker, C., et al. (2009). A flexible solution-processed memristor. IEEE Electron Device Letters, 30(7), 706–708.

    Article  Google Scholar 

  • Jain et al. K. (1982). Ultrafast deep-UV lithography with excimer lasers, IEEE Electron Device Letter, EDL-3(53).

    Google Scholar 

  • Joglekar, Y. N., & Wolf, S. J. (2009). The elusive memristor: Properties of basic electrical circuits. European Journal of Physics, 30(4), 661–675.

    Article  MATH  Google Scholar 

  • Johnson, D. (2010). Junctionless transistor fabricated from nanowires. IEEE Spectrum. Retrieved 04-20-2010.

    Google Scholar 

  • La Fontaine, B. (2010). Lasers and Moore’s Law, SPIE Professional, p. 20, Oct. 2010.

    Google Scholar 

  • Liu, G., Fang, L., Li, N., Sui, B., & Duan, Z. (2010). New behavioral modeling method for crossbar-based memristor, Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics, (pp. 356–359).

    Google Scholar 

  • Larrieu, G., & Han, X. L. (2013). Vertical nanowire array-based field effect transistors for ultimate scaling. Nanoscale, 5(6), 2437–2441.

    Google Scholar 

  • Mohanty, S. P. (2013). Memristor: from basics to deployment. IEEE Potentials, 32(3), 34–39.

    Article  Google Scholar 

  • Mohsin, F. (2010). A Multivalued Storage System Using Memristor, Proceedings of 13th International Conference on Computer and Information Technology, (pp. 343–346).

    Google Scholar 

  • Noyce, R. (1961). Semiconductor device-and-lead structure, US 2981877, issued 25 April 1961 (filed 30 July 1959).

    Google Scholar 

  • Pattanaik, M., Raj, B., Sharma, S., & Kumar, A. (2012). Diode based trimode multi-threshold CMOS technique for ground bounce noise reduction in static CMOS adders. Advanced Materials Research, 548, 885–889.

    Article  Google Scholar 

  • Prodromakis, T., & Papavassiliou, C. (2011). A Versatile Memristor Model With nonlinear Dopant Kinetics. IEEE Transactions on Electron Devices, 58(9), 3099–3105.

    Article  Google Scholar 

  • Raj, B. (2014). Quantum mechanical potential modeling of FinFET. Towards Quantum FinFET, (Vol. 17, pp 81–97). Springer. (ISBN 978-3-319-02021-1).

    Google Scholar 

  • Raj, B., Saxena, A. K., & Dasgupta, S. (2008). A compact drain current and threshold voltage quantum mechanical analytical modeling for FinFETs. Journal of Nanoelectronics and Optoelectronics (JNO) USA, 3(2), 163–170.

    Article  Google Scholar 

  • Raj, B., Saxena, A. K., & Dasgupta, S. (2009). Analytical modeling for the estimation of leakage current and subthreshold swing factor of nanoscale double gate finfet device. Microelectronics International, UK, 26, 53–63.

    Article  Google Scholar 

  • Raj, B., Saxena, A. K., & Dasgupta, S. (2011a). Nanoscale FinFET Based SRAM Cell Design: Analysis of Performance metric, Process variation, Underlapped FinFET and Temperature effect. IEEE Circuits and System Magazine, 11(2), 38–50.

    Article  Google Scholar 

  • Raj, B., Mitra, J., Bihani, D. K., Rangharajan, V, Saxena, A. K., & Dasgupta, S. (2011). Process variation tolerant FinFET based robust low power sram cell design at 32 nm technology. Journal of Low Power Electronics (JOLPE), Academy Publisher, FINLAND, 7(2), 163–171.

    Google Scholar 

  • Raj, B., Saxena, A. K., & Dasgupta, S. (2011c). High performance double gate FinFET SRAM cell design for low power application. International Journal of VLSI and Signal Processing Applications., 1(1), 12–20.

    Google Scholar 

  • Raj, B., Saxena, A. K., & Dasgupta, S. (2013). Quantum mechanical analytical modeling of nanoscale DG FinFET: evaluation of potential, threshold voltage and source/drain resistance. Elsevier’s Journal of Material Science in Semiconductor Processing, Elsevier, 16(4), 1131–1137.

    Article  Google Scholar 

  • Raja, T., & Mourad, S. (2010). Digital logic implementation in memristor-based crossbars—a tutorial, Proceedings. Fifth IEEE International Symposium on Electronic Design, Test & Applications, (pp. 303–309).

    Google Scholar 

  • Sharma, V. K., Pattanaik, M., & Raj, B. (2014). PVT variations aware low leakage INDEP approach for nanoscale CMOS circuits. Microelectronics Reliability, 54(1), 90–99.

    Article  Google Scholar 

  • Sharma, V. K., Pattanaik, M., & Raj, B. (2015). INDEP approach for leakage reduction in nanoscale CMOS circuits. International Journal of Electronics, 102(2), 200–215.

    Article  Google Scholar 

  • Shin, S., Kim, K., & Kang, S. M. (2010). Compact models for memristors based on charge–flux constitutive relationships. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(4).

    Google Scholar 

  • Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.

    Article  Google Scholar 

  • Varghese, D., & Gandhi, G. (2009). Memristor based high linear range differential pair, International Conference on Communications, Circuits and Systems, (pp. 935–938).

    Google Scholar 

  • Vishvakarma, S. K., Agrawal, V., Raj, B., Dasgupta, S., & Saxena, A. K. (2007). Two dimensional analytical potential modeling of Nanoscale Symmetric Double Gate (SDG) MOSFET with Ultra Thin Body (UTB). Journal of Computational and Theoretical Nanoscience, 4(6), 1144–1148.

    Article  Google Scholar 

  • Volos, Ch. K., & Kyprianidis, I. M., Stouboulos1, I. N., Tlelo-Cuautle2, E., Vaidyanathan, S. (2015). Memristor: a new concept in synchronization of coupled neuromorphic circuits, Journal of Engineering Science and Technology Review, 8(2), 157–173.

    Google Scholar 

  • Wanlass, F. (1967). Low stand-by power complementary field effect circuitry”, US 3356858, issued 5 December 1967 (filed 18 June 1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundarapandian Vaidyanathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raj, B., Vaidyanathan, S. (2017). Analysis of Dynamic Linear Memristor Device Models. In: Vaidyanathan, S., Volos, C. (eds) Advances in Memristors, Memristive Devices and Systems. Studies in Computational Intelligence, vol 701. Springer, Cham. https://doi.org/10.1007/978-3-319-51724-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51724-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51723-0

  • Online ISBN: 978-3-319-51724-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics