Skip to main content

Ultra-Low Power Analog Interfaces for IoT

  • Chapter
  • First Online:
Book cover Enabling the Internet of Things
  • 4014 Accesses

Abstract

This chapter addresses the challenges and design strategies in Analog Front-End (AFE) interface circuit design with an umbrella of IoT. A stringent energy constraint in IoT means the circuit specification must take into account the energy-efficient operation. Also, at the same constraint, the dynamic and static offset/noise compensation should be done effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M.A.B. Altaf, J. Yoo, A 1.83μJ/classification, 8-channel, patient-specific epileptic seizure classification SoC using a non-linear support vector machine. IEEE Trans. Biomed. Circuits Syst. 10(1), 49–60 (2016)

    Article  Google Scholar 

  • M.A.B. Altaf, C. Zhang, J. Yoo, A 16-channel patient-specific seizure onset and termination detection SoC with impedance-adaptive transcranial electrical stimulator. IEEE J. Solid State Circuits 50(11), 2728–2740 (2015)

    Article  Google Scholar 

  • A. Bakker, K. Thiele, J.H. Huijsing, A CMOS nested chopper instrumentation amplifier with 100nV offset. IEEE J. Solid State Circuits 35(12), 1877–1883 (2000)

    Article  Google Scholar 

  • M. Belleville, E. Cantatore, H. Fanet, P. Fiorini, P. Nicole, M. Pelgrom, C. Piguet, R. Hahn, C. Van Hoof, R. Vullers, M. Tartagni, Energy autonomous systems: future trends in devices, technology, and systems, CATRENE Report on Energy Autonomous Systems (2009)

    Google Scholar 

  • T. Denison, K. Consoer, W. Santa, A.-T. Avestruz, J. Cooley, A. Kelly, A 2μW 100nV/√ Hz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J. Solid State Circuits 42(12), 2934–2945 (2007)

    Article  Google Scholar 

  • C.C. Enz, G.C. Temes, Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE 84(11), 1584–1614 (1996)

    Article  Google Scholar 

  • Q. Fan, F. Sebastiano, J.H. Huijsing, K.A.A. Makinwa, A 1.8μW 60nV/sqrtHz capacitively-coupled chopper instrumentation amplifier in 65nm CMOS for wireless sensor nodes. IEEE J. Solid State Circuits 46(7), 1534–1543 (2011)

    Article  Google Scholar 

  • M. Han, B. Ki, Y.-A. Chen, H. Lee, S.-H. Park, E. Cheong, J. Hong, G. Han, Y. Chae, Bulk switching instrumentation amplifier for a high-impedance source in neural signal recording. IEEE Trans. Circuits Syst. Exp. Briefs 62(2), 194–198 (2015)

    Article  Google Scholar 

  • R.R. Harrison, C. Charles, A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid State Circuits 38(6), 958–965 (2003)

    Article  Google Scholar 

  • K.A.A. Makinwa, Dynamic-offset cancellation techniques in CMOS, in IEEE International Solid-State Circuits Conference, Tutorial-04 (2007)

    Google Scholar 

  • C. Menolfi, Q. Huang, A chopper modulated instrumentation amplifier with first-order low-pass filter and delayed modulation scheme, in Proceedings of the IEEE European Solid-State Circuits Conference (1999), pp. 54–57

    Google Scholar 

  • M. Steyaert, W. Sansen, C. Zhongyuan, A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J. Solid State Circuits SC-22, 1163–1168 (1987)

    Article  Google Scholar 

  • N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, A.P. Chandrakasan, A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J. Solid State Circuits 45(4), 804–816 (2010)

    Article  Google Scholar 

  • R. Wu, K.A.A. Makinwa, J.H. Huijsing, A chopper current-feedback instrumentation amplifier with a 1mHz 1/f noise corner and an AC-coupled ripple reduction loop. IEEE J. Solid State Circuits 44(12), 3232–3243 (2009)

    Article  Google Scholar 

  • L. Yan, J. Yoo, B. Kim, H.-J. Yoo, A 0.5-μVrms 12-μW wirelessly powered patch-type healthcare sensor for wearable body sensor network. IEEE J. Solid State Circuits 45(11), 2356–2365 (2010)

    Google Scholar 

  • R.F. Yazicioglu, S. Kim, T. Torfs, H. Kim, C. Van Hoof, A 30μW analog signal processor ASIC for portable biopotential signal monitoring. IEEE J. Solid State Circuits 46(1), 209–223 (2011)

    Article  Google Scholar 

  • J. Yoo, L. Yan, D. El-Damak, M.A.B. Altaf, A.H. Shoeb, A.P. Chandrakasan, An 8-channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor. IEEE J. Solid State Circuits 48(1), 214–228 (2013)

    Article  Google Scholar 

  • J. Yoo, Design strategies for wearable sensor interface circuits: from electrodes to signal processing, in IEEE International Solid-State Circuits Conference, Short Course on Biomedical and Sensor Interface Circuits, 13 Feb (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerald Yoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yoo, J. (2017). Ultra-Low Power Analog Interfaces for IoT. In: Alioto, M. (eds) Enabling the Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-319-51482-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51482-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51480-2

  • Online ISBN: 978-3-319-51482-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics