Skip to main content

Reliability-Based Local Features Aggregation for Image Segmentation

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10072))

Included in the following conference series:

Abstract

Local features are used for describing the visual information in a local neighborhood of image pixels. Although using various types of local features can provide complementary information about the pixels, effective integration of these features has remained as a challenging issue. In this paper, we propose a novel segmentation algorithm which aggregates the information obtained from different local features. Starting with an over-segmentation of the input image, local features are fed into a factorization-based framework to construct multiple new representations. We then introduce a novel aggregation model to integrate the new representations. Our proposed model jointly learns the reliability of representations and infers final representation. Final segmentation is obtained by applying post-processing steps on the inferred final representation. Experimental results demonstrate the effectiveness of our algorithm on the Berkeley Segmentation Dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuan, J., Wang, D., Cheriyadat, A.M.: Factorization-based texture segmentation. IEEE Trans. Image Process. 24, 3488–3497 (2015)

    Article  MathSciNet  Google Scholar 

  2. Liu, T., Seyedhosseini, M., Tasdizen, T.: Image segmentation using hierarchical merge tree. IEEE Trans. Image Process. 25, 4596–4607 (2016)

    Article  MathSciNet  Google Scholar 

  3. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 898–916 (2011)

    Article  Google Scholar 

  4. Li, Z., Wu, X.M., Chang, S.F.: Segmentation using superpixels: a bipartite graph partitioning approach. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 789–796. IEEE (2012)

    Google Scholar 

  5. Fu, X., Wang, C.Y., Chen, C., Wang, C., Jay Kuo, C.C.: Robust image segmentation using contour-guided color palettes. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1618–1625 (2015)

    Google Scholar 

  6. Liu, X., Wang, D.: Image and texture segmentation using local spectral histograms. IEEE Trans. Image Process. 15, 3066–3077 (2006)

    Article  Google Scholar 

  7. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)

    Article  Google Scholar 

  8. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59, 167–181 (2004)

    Article  Google Scholar 

  9. Beucher, S., et al.: The watershed transformation applied to image segmentation. SCANNING MICROSCOPY-SUPPLEMENT, p. 299 (1992)

    Google Scholar 

  10. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)

    Article  Google Scholar 

  11. Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1841–1848 (2013)

    Google Scholar 

  12. Maire, M., Arbeláez, P., Fowlkes, C., Malik, J.: Using contours to detect and localize junctions in natural images. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  13. Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52, 155–173 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, J., Nie, F., Huang, H.: A new simplex sparse learning model to measure data similarity for clustering. In: Proceedings of the 24th International Conference on Artificial Intelligence, pp. 3569–3575. AAAI Press (2015)

    Google Scholar 

  15. Leordeanu, M., Sukthankar, R., Sminchisescu, C.: Generalized boundaries from multiple image interpretations. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1312–1324 (2014)

    Article  Google Scholar 

  16. Malik, J., Belongie, S., Shi, J., Leung, T.: Textons, contours and regions: cue integration in image segmentation. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol. 2, pp. 918–925. IEEE (1999)

    Google Scholar 

  17. Malisiewicz, T., Efros, A.A.: Improving spatial support for objects via multiple segmentations (2007)

    Google Scholar 

  18. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846–850 (1971)

    Article  Google Scholar 

  19. Meil, M.: Comparing clusterings: an axiomatic view. In: Proceedings of the 22nd international conference on Machine learning, pp. 577–584. ACM (2005)

    Google Scholar 

  20. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 416–423. IEEE (2001)

    Google Scholar 

  21. Freixenet, J., Muñoz, X., Raba, D., Martí, J., Cufí, X.: Yet another survey on image segmentation: region and boundary information integration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 408–422. Springer, Heidelberg (2002). doi:10.1007/3-540-47977-5_27

    Chapter  Google Scholar 

  22. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  23. Cour, T., Benezit, F., Shi, J.: Spectral segmentation with multiscale graph decomposition. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 1124–1131. IEEE (2005)

    Google Scholar 

  24. Kim, T.H., Lee, K.M., Lee, S.U.: Learning full pairwise affinities for spectral segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1690–1703 (2013)

    Article  Google Scholar 

  25. Donoser, M., Urschler, M., Hirzer, M., Bischof, H.: Saliency driven total variation segmentation. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 817–824. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariba Zohrizadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Zohrizadeh, F., Kheirandishfard, M., Ghasedidizaji, K., Kamangar, F. (2016). Reliability-Based Local Features Aggregation for Image Segmentation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50835-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50834-4

  • Online ISBN: 978-3-319-50835-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics