Skip to main content

Similarity Metric Learning for 2D to 3D Registration of Brain Vasculature

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10072))

Abstract

2D to 3D image registration techniques are useful in the treatment of neurological diseases such as stroke. Image registration can aid physicians and neurosurgeons in the visualization of the brain for treatment planning, provide 3D information during treatment, and enable serial comparisons. In the context of stroke, image registration is challenged by the occluded vessels and deformed anatomy due to the ischemic process. In this paper, we present an algorithm to register 2D digital subtraction angiography (DSA) with 3D magnetic resonance angiography (MRA) based upon local point cloud descriptors. The similarity between these local descriptors is learned using a machine learning algorithm, allowing flexibility in the matching process. In our experiments, the error rate of 2D/3D registration using our machine learning similarity metric (52.29) shows significant improvement when compared to a Euclidean metric (152.54). The proposed similarity metric is versatile and could be applied to a wide range of 2D/3D registration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Holmes, D., Rettmann, M., Robb, R.: Visualization in image-guided interventions. In: Peters, T., Cleary, K. (eds.) Image-Guided Interventions: Technology and Applications, pp. 45–80. Springer, New York (2008)

    Chapter  Google Scholar 

  2. Flood, P.D., Banks, S.A.: Automated registration of three-dimensional knee implant models to fluoroscopic images using lipschitzian optimization. IEEE Trans. Med. Imaging PP(99), 1 (2016). doi:10.1109/TMI.2016.2553111

    Article  Google Scholar 

  3. Otake, Y., Wang, A.S., Stayman, J.W., Uneri, A., Kleinszig, G., Vogt, S., Khanna, A.J., Gokaslan, Z.L., Siewerdsen, J.H.: Robust 3D–2D image registration: application to spine interventions and vertebral labeling in the presence of anatomical deformation. Phys. Med. Biol. 58, 8535–8553 (2013)

    Article  Google Scholar 

  4. Fu, D., Kuduvalli, G.: A fast, accurate, and automatic 2D–3D image registration for image-guided cranial radiosurgery. Med. Phys. 35(5), 2180–2194 (2008)

    Article  Google Scholar 

  5. Markelj, P., Tomaevi, D., Likar, B., Pernu, F.: A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 16, 642–661 (2012)

    Article  Google Scholar 

  6. Alves, R.S., Tavares, J.M.R.S.: Computer image registration techniques applied to nuclear medicine images. In: Tavares, J.M.R.S., Natal Jorge, R.M. (eds.) Computational and Experimental Biomedical Sciences: Methods and Applications. LNCVB, vol. 21, pp. 173–191. Springer, Heidelberg (2015). doi:10.1007/978-3-319-15799-3_13

    Google Scholar 

  7. Tavares, J.M.R.S.: Analysis of biomedical images based on automated methods of image registration. In: Bebis, G., et al. (eds.) ISVC 2014. LNCS, vol. 8887, pp. 21–30. Springer, Heidelberg (2014). doi:10.1007/978-3-319-14249-4_3

    Google Scholar 

  8. Oliveira, F.P., Tavares, J.M.R.: Medical image registration: a review. Comput. Methods Biomech. Biomed. Engin. 17, 73–93 (2014)

    Article  Google Scholar 

  9. Chen, X., Varley, M.R., Shark, L.K., Shentall, G.S., Kirby, M.C.: An extension of iterative closest point algorithm for 3D–2D registration for pre-treatment validation in radiotherapy. In: MedVis, pp. 3–8 (2006)

    Google Scholar 

  10. Birkfellner, W., Stock, M., Figl, M., Gendrin, C., Hummel, J., Dong, S., Kettenbach, J., Georg, D., Bergmann, H.: Stochastic rank correlation: a robust merit function for 2D/3D registration of image data obtained at different energies. Med. Phys. 36, 3420–3428 (2009)

    Article  Google Scholar 

  11. Vermandel, M., Betrouni, N., Gauvrit, J.Y., Pasquier, D., Vasseur, C., Rousseau, J.: Intrinsic 2D/3D registration based on a hybrid approach: use in the radiosurgical imaging process. Cell. Mol. Biol. 52, 44–53 (2006)

    Google Scholar 

  12. Oliveira, F.P., Pataky, T.C., Tavares, J.M.R.: Registration of pedobarographic image data in the frequency domain. Comput. Methods Biomech. Biomed. Engin 13, 731–740 (2010)

    Article  Google Scholar 

  13. Khandelwal, P., Yavagal, D.R., Sacco, R.L.: Acute ischemic stroke intervention. J. Am. Coll. Cardiol. 67, 2631–2644 (2016)

    Article  Google Scholar 

  14. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). doi:10.1007/BFb0056195

    Chapter  Google Scholar 

  15. Cai, D., He, X., Han, J.: Spectral regression for efficient regularized subspace learning. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  16. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Scalzo, F., Liebeskind, D.S.: Perfusion angiography in acute ischemic stroke. Comput. Math. Methods Med. 2014, 1–14 (2016). doi:10.1155/2016/2478324. Article ID 2478324

    Article  MathSciNet  Google Scholar 

  18. Scalzo, F., Hao, Q., Walczak, A.M., Hu, X., Hoi, Y., Hoffmann, K.R., Liebeskind, D.S.: Computational hemodynamics in intracranial vessels reconstructed from biplane angiograms. In: Bebis, G., et al. (eds.) ISVC 2010. LNCS, vol. 6455, pp. 359–367. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17277-9_37

    Chapter  Google Scholar 

  19. Nam, H.S., Scalzo, F., Leng, X., Ip, H.L., Lee, H.S., Fan, F., Chen, X., Soo, Y., Miao, Z., Liu, L., Feldmann, E., Leung, T., Wong, K.S., Liebeskind, D.S.: Hemodynamic impact of systolic blood pressure and hematocrit calculated by computational fluid dynamics in patients with intracranial atherosclerosis. J. Neuroimaging 26, 331–338 (2016)

    Article  Google Scholar 

  20. Leng, X., Scalzo, F., Fong, A.K., Johnson, M., Ip, H.L., Soo, Y., Leung, T., Liu, L., Feldmann, E., Wong, K.S., Liebeskind, D.S.: Computational fluid dynamics of computed tomography angiography to detect the hemodynamic impact of intracranial atherosclerotic stenosis. Neurovascular Imaging 1, 1 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

Prof. Scalzo was partially supported by a AHA grant 16BGIA27760152, a Spitzer grant, and received hardware donations from Gigabyte, Nvidia, and Intel. Alice Tang was partially supported by a UC Leads Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Scalzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Tang, A., Scalzo, F. (2016). Similarity Metric Learning for 2D to 3D Registration of Brain Vasculature. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50835-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50834-4

  • Online ISBN: 978-3-319-50835-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics