Skip to main content

Visual Intelligent Decision Support Systems in the Medical Field: Design and Evaluation

  • Chapter
  • First Online:
Machine Learning for Health Informatics

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9605))

  • 5069 Accesses

Abstract

The tendency for visual data mining applications in the medical field is increasing, because it is rich with temporal information, furthermore visual data mining is becoming a necessity for intelligent analysis and graphical interpretation. The use of interactive machine learning allows to improve the quality of medical decision-making processes by effectively integrating and visualizing discovered important patterns and/or rules. This chapter provides a survey of visual intelligent decision support systems in the medical field. First, we highlight the benefits of combining potential computational capabilities of data mining with human judgment of visualization techniques for medical decision-making. Second, we introduce the principal challenges of such decision systems, including the design, development and evaluation. In addition, we study how these methods were applied in the medical domain. Finally, we discuss some open questions and future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abed, M., Bernard, J.M., Angué, J.C.: Task analysis and modeling by using SADT and Petri Networks. In: Proceedings Tenth European Annual Conference on Human Decision Making and Manual Control, Liege, Belgium (1991)

    Google Scholar 

  2. Acevedo, D., Jackson, C.D., Drury, F., Laidlaw, D.H.: Using visual design experts in critique-based evaluation of 2D vector visualization methods. IEEE Trans. Visual Comput. Graphics 14(4), 877–884 (2008)

    Article  Google Scholar 

  3. André, J.: Moving From Merise to Schlaer and Mellor, 3rd edn. SIG-Publication, New York (1994)

    Google Scholar 

  4. Lee, J., Barley, M. (eds.): PRIMA 2003. LNCS (LNAI), vol. 2891. Springer, Heidelberg (2003). doi:10.1007/b94219

    Google Scholar 

  5. Basole, R.C., Braunstein, M.L., Kumar, V., Park, H., Kahng, M., Chau, D.H., et al.: Understanding variations in pediatric asthma care processes in the emergency department using visual analytics. J. Am. Med. Inform. Assoc. 22(2), 318–323 (2015)

    Article  Google Scholar 

  6. Ayed, M.B., Ltifi, H., Kolski, C., Alimi, M.A.: A user-centered approach for the design and implementation of KDD-based DSS: a case study in the healthcare domain. Decis. Support Syst. 50(1), 64–78 (2010)

    Article  Google Scholar 

  7. Ben Jemmaa, A., Ltifi, H., Ayed, M.B.: Multi-agent architecture for visual intelligent remote healthcare monitoring system. In: The 15th International Conference on Hybrid Intelligent Systems (HIS 2015) in Seoul, South Korea, pp. 211–221 (2015)

    Google Scholar 

  8. Benmohamed, E., Ltifi, H., Ayed, M.B.: Using Bloom’s taxonomy to enhance interactive concentric circles representation. In: The 12th ACS/IEEE International Conference on Computer Systems and Applications, Marrakech, Moroco (2015)

    Google Scholar 

  9. Boehm, B.: A spiral model of software development and enhancement. Computer 21, 61–72 (1988)

    Article  Google Scholar 

  10. Burnett, C.: Trust assessment and decision-making in dynamic multi-agent systems, Ph.D. Dissertation, Department of Computing Science, University of Aberdeen (2011)

    Google Scholar 

  11. Cleveland, W.S.: The Elements of Graphing Data. Hobart Press, Summit (1994)

    Google Scholar 

  12. Chen, C., Czerwinski, M.: Empirical evaluation of information visualizations: an introduction. Int. J. Hum.-Comp. Studies 53, 631–635 (2000)

    Article  Google Scholar 

  13. Courbon, J.C., Grageof, J., Tomasi, J.: L’approche évolutive. Informatique et Gestion 21, 29–34 (1981)

    Google Scholar 

  14. Dearden, A., Harrison, M., Wright, P.: Allocation of function: scenarios, context and the economics of effort. Int. J. Hum.-Comp. Studies 52, 289–318 (2000)

    Article  Google Scholar 

  15. Duribreux-Cocquebert, M.: MODESTI: vers une méthodologie interactive de développement de Systèmes à Base de Connaissances, Ph.D. Thesis, University of Valenciennes, France (1995)

    Google Scholar 

  16. Ellouzi, H., Ltifi, H., Ayed, M.B.: New Multi-agent architecture of visual intelligent decision support systems: application in the medical field. In: The 12th ACS/IEEE International Conference on Computer Systems and Applications, Morocco (2015)

    Google Scholar 

  17. El-Sappagh, S.H., El-Masri, S.: A distributed clinical decision support system architecture. J. King Saud Univ. Comput. Inf. Sci. 26(1), 69–78 (2014)

    Google Scholar 

  18. Fails, J., Karlson, A., Shahamat, L., Shneiderman, B.: A visual interface for multivariate temporal data: finding patterns of events across multiple histories. In: IEEE Symposium on Visual Analytics Science and Technology, pp. 167–174 (2006)

    Google Scholar 

  19. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: Knowledge discovery and data mining: towards a unifying framework. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, pp. 82–88. AAAI Press, Portland, August 1996

    Google Scholar 

  20. Freitas, C., Luzzardi, P., Cava, R., Pimenta, M., Winckler, A., Nedel, L.: Evaluating usability of information visualization techniques. In: Proceeding Advanced Visual Interfaces (AVI 2002), pp. 373–374 (2002)

    Google Scholar 

  21. Gachet, A., Sprague, R.: A context-based approach to the development of decision support systems. Encycl. Decis. Making Decis. Support Technol. 2, 93–101 (2008)

    Article  Google Scholar 

  22. Gonzales, V., Kobsa, A.: A workplace study of the adoption of information visualization systems. In: Proceeding I-KNOW 2003, Third International Conference Knowledge Management, pp. 92–102 (2003)

    Google Scholar 

  23. Gordon, H.S., Johnson, M.L., Wray, N.P., et al.: Mortality after noncardiac surgery: prediction from administrative versus clinical data. Med. Care 43, 159–167 (2005)

    Article  Google Scholar 

  24. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufman, Los Altos (2006)

    MATH  Google Scholar 

  25. Hardin, J.M., Chhieng, D.C.: Data mining and clinical decision support systems. In: Berner, E.S. (ed.) Clinical Decision Support Systems Theory and Practice. Health Informatics, pp. 44–63. Springer, New York (2007)

    Chapter  Google Scholar 

  26. Hartson, H., Hix, D.: Developing User Interfaces: Ensuring Usability through Product and Process. Wiley, New York (1993)

    MATH  Google Scholar 

  27. Hoc, J.M., Amalberti, R.: Diagnosis: Some theoretical questions raised by applied research. Current Psychol. Cogn. 14(1), 73–101 (1995)

    Google Scholar 

  28. Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Informatics, pp 1–13 (2016)

    Google Scholar 

  29. Irani, P., Ware, C.: Diagramming information structures using 3D perceptual primitives. ACM Trans. Comput.-Hum. Interact. 10(1), 1–19 (2003)

    Article  Google Scholar 

  30. Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., Möller, T.: A systematic review on the practice of evaluating visualization. IEEE Trans. Visual Comput. Graph. 19(12), 2818–2827 (2013)

    Article  Google Scholar 

  31. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process. Addison Wesley Longman, Boston (1999)

    Google Scholar 

  32. Jeanquartier, F., Jean-Quartier, C., Holzinger, A.: Integrated web visualizations for protein-protein interaction databases. BMC Bioinformatics 16(1), 195 (2015)

    Article  Google Scholar 

  33. Jemal, H., Kechaou, Z., Ayed, M.B., Alimi, A.M.: A multi agent system for hospital organization. Int. J. Mach. Learn. Comput. 5(1), 51–56 (2015)

    Article  Google Scholar 

  34. Juarez, O.: CAEVA: cognitive architecture to evaluate visualization applications. In: Proceeding International Conference Information Visualization (IV 2003), pp. 589–595 (2003)

    Google Scholar 

  35. Jungermann, H., Fischer, K.: Using expertise and experience for giving and taking advice. In: Betsch, T., Haberstroh, S. (eds.) The Routines and Decision Making. Lawrence Erlbaum, Mahwah (2005)

    Google Scholar 

  36. Keefe, D.F., Karelitz, D.B., Vote, E.L., Laidlaw, D.H.: Artistic collaboration in designing VR visualizations. IEEE Comput. Graph. Appl. 25(2), 18–23 (2005)

    Article  Google Scholar 

  37. Keim, D.A.: Information visualization and visual data mining. IEEE Trans. Visual Comput. Graph. 8(1), 1–8 (2002)

    Article  MathSciNet  Google Scholar 

  38. Khademolqorani, S., Hamadani, A.Z.: An adjusted decision support system through data mining and multiple criteria decision-making. In: Social and Behavioral Sciences, vol. 73, pp. 388–395 (2013)

    Google Scholar 

  39. Kobsa, A.: An empirical comparison of three commercial information visualization systems. In: Proceeding IEEE InfoVis, pp. 123–130 (2001)

    Google Scholar 

  40. Kolski, C.: A call for answers around the proposition of an HCI-enriched model. ACM SIGSOFT Softw. Eng. Notes 3, 93–96 (1998)

    Article  Google Scholar 

  41. Kountchev, R., Iantovics, B. (eds.): Advances in Intelligent Analysis of Medical Data and Decision Support Systems. Studies in Computational Intelligence, vol. 473. Springer, Heidelberg (2013)

    Google Scholar 

  42. Krzywicki, D., Faber, L., Byrski, A., Kisiel-Dorohinicki, M.: Computing agents for decision support systems. Future Gener. Comput. Syst. 37, 390–400 (2014)

    Article  Google Scholar 

  43. Kumar, A., Gosain, A.: Analysis of health care data using different data mining techniques. in: International Conference on Intelligent Agent & Multi-Agent Systems (IAMA), Chennai, pp. 1–6 (2009)

    Google Scholar 

  44. Kuo, K.-L., Fuh, C.-S.: A rule-based clinical decision model to support interpretation of multiple data in health examinations. J. Med. Syst. 35(6), 1359–1373 (2011)

    Article  Google Scholar 

  45. Kosara, R.: Visualization criticism – the missing link between information visualization and art. In: Proceeding Information Visualization, pp. 631–636. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  46. Lepreux, S.: Approche de Développement centré décideur et à l’aide de patrons de Systèmes Interactifs d’Aide à la Décision, PhD Thesis, Valenciennes, France (2005)

    Google Scholar 

  47. Leonard, J.E., Colombe, J.B., Levy, J.L.: Finding relevant references to genes and proteins in Medline using a Bayesian approach. Bioinformatics 18, 1515–1522 (2002)

    Article  Google Scholar 

  48. Long, J.B., Denley, I.: Evaluation for practice: tutorial. In: Ergonomics Society Annual Conference (1990)

    Google Scholar 

  49. Ltifi, H., Ayed, M.B., Lepreux, S., et al.: Survey of information visualization techniques for exploitation in KDD. In: IEEE AICCSA, Rabat, Morocco, pp. 218–225. IEEE Computer Society, New York (2009)

    Google Scholar 

  50. Ltifi, H., Trabelsi, G., Ayed, M.B., Alimi, A.M.: Dynamic decision support system based on Bayesian Networks, application to fight against the Nosocomial Infections. Int. J. Adv. Res. Artif. Intell. (IJARAI) 1(1), 22–29 (2012)

    Google Scholar 

  51. Ltifi, H., Kolski, C., Ayed, M.B., et al.: Human-centered design approach for developing dynamic decision support system based on knowledge discovery in databases. J. Decis. Syst. 22(2), 69–96 (2013)

    Article  Google Scholar 

  52. Ltifi, H., Mohamed, E.B., Ayed, M.B.: Interactive visual KDD based temporal decision support system. Inform. Visual. 14(1), 1–20 (2015)

    Google Scholar 

  53. Ltifi, H., Kolski, C., Ayed, M.B.: Combination of cognitive and HCI modeling for the design of KDD-based DSS used in dynamic situations. Decis. Support Syst. 78, 51–64 (2015)

    Article  Google Scholar 

  54. McDermid, J., Ripkin, K.: Life Cycle Support in the ADA Environment. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  55. Mackinlay, J.D.: Automating the design of graphical presentations of relational information. ACM Trans. Graphics 5, 110–141 (1986)

    Article  Google Scholar 

  56. Mazza, R., Berre, A.: Focus group methodology for evaluating information visualization techniques and tools. In: 11th International Conference on Information Visualization, IV 2007, Zurich, pp. 74–80. IEEE (2007)

    Google Scholar 

  57. Millot, P.: Cooperative organization for Enhancing Situation Awareness. In: Millot, P. (ed.) Risk Management in Life Critical Systems, pp. 279–300. ISTE-Wiley, London (2014)

    Google Scholar 

  58. Monroe, M., Lan, R., del Olmo, J.M., Shneiderman, B., Plaisant, C., Millstein, J.: The challenges of specifying intervals and absences in temporal queries: a graphical language approach. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 2349–2358. ACM, New York (2013)

    Google Scholar 

  59. Müller, H., Reihs, R., Zatloukal, K., Holzinger, A.: Analysis of biomedical data with multilevel glyphs. BMC Bioinformatics 15(Suppl 6), S5 (2014)

    Article  Google Scholar 

  60. Musen, M.A., Shahar, Y., Shortliffe, E.H.: Clinical Decision-Support Systems, Biomedical Informatics. Part of the series Health Informatics, pp. 698–736 (2006)

    Google Scholar 

  61. Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    MATH  Google Scholar 

  62. North, C.: Toward measuring visualization insight. IEEE Comput. Graphics Appl. 11(4), 443–456 (2005)

    Google Scholar 

  63. Nykanen, P.: Decision support system from a health informatics perspective, Ph.D. Thesis, University of Tampere (2000)

    Google Scholar 

  64. Otasek, D., Pastrello, C., Holzinger, A., Jurisica, I.: Visual data mining: effective exploration of the biological universe. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics: State-of-the-Art and Future Challenges. LNCS, vol. 8401, pp. 19–34. Springer, Heidelberg (2014)

    Google Scholar 

  65. Perer, A., Wang, F.: Frequence: interactive mining and visualization of temporal frequent event sequences. In: Proceedings of the 19th International Conference on Intelligent User Interfaces, IUI 2014, pp. 153–162. ACM, New York (2014)

    Google Scholar 

  66. Plaisant, C.: The challenge of information visualization evaluation, In: AVI 2004, Proceeding Advanced visual interfaces, pp. 109–116 (2004)

    Google Scholar 

  67. Polk, T., Seifert, C.: Cognitive Modeling. Bradford Books series, A Bradford Book, 1292 pages (2002)

    Google Scholar 

  68. Posard, M.: Status processes in human-computer interactions: does gender matter? Comput. Hum. Behav. 37(37), 189–195 (2014)

    Article  Google Scholar 

  69. Power, D.: Decision Support Systems: Frequently Asked Questions. iUniverse, Inc., 252 pages (2004)

    Google Scholar 

  70. Power, D.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

    Google Scholar 

  71. Rieman, J.: A field study of exploratory learning strategies. ACM Trans. Comput.-Hum. Interact. 3, 189–218 (1996)

    Article  Google Scholar 

  72. Royce, W.: Managing the development of large software systems: concepts and techniques. WESCON, Technical Papers (1970)

    Google Scholar 

  73. Saraiya, P., North, C., Duca, K.: An insight-based methodology for evaluating bioinformatics visualizations. IEEE Trans. Visual Comput. Graphics 11(4), 443–456 (2005)

    Article  Google Scholar 

  74. Sears, A., Jacko, J.A. (eds.): The Human Computer Interaction Handbook: Fundamentals, Evolving Technologies and Emerging Applications, 2nd edn. Lawrence Erlbaum Associates, Mahwah (2008)

    Google Scholar 

  75. Shibl, R., Lawley, M., Debuse, J.: Factors influencing decision support system acceptance. Decis. Support Syst. 54(2), 953–961 (2013)

    Article  Google Scholar 

  76. Shneiderman, B.: The eyes have it: a task by data type taxonomy. In: Proceeding IEEE Symposium Visual Languages 1996, pp. 336–343 (1996)

    Google Scholar 

  77. Shneiderman, B., Plaisant, C.: Strategies for evaluating information visualization tools: multi-dimensional in-depth long-term case studies. In: Proceeding BELIV, pp. 81–87. ACM, New York (2006)

    Google Scholar 

  78. Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.): Visual Data Mining. LNCS, vol. 4404. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71080-6

    Google Scholar 

  79. Sommerville, I.: What is Software Engineering? 8th edn, p. 7. Pearson Education, Harlow (2007). ISBN 0-321-31379-8

    Google Scholar 

  80. Tran, T.T.: Protecting buying agents in e-marketplaces by direct experience trust modelling. Knowl. Inf. Syst. 22(1), 65–100 (2010)

    Article  Google Scholar 

  81. Tory, M., Moller, T.: Evaluating visualizations: do expert reviews work? IEEE Comput. Graphics Appl. 25(5), 8–11 (2005)

    Article  Google Scholar 

  82. Tsolis, D., Paschali, K., Tsakona, A., Ioannou, Z.-M., Likothanasis, S., Tsakalidis, A., Alexandrides, T., Tsamandas, A.: Development of a clinical decision support system using AI, medical data mining and web applications. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds.) EANN 2013. CCIS, vol. 384, pp. 174–184. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41016-1_19

    Chapter  Google Scholar 

  83. Turban, E., Aronson, J.E., Liang, T.P.: Decision Support Systems and Intelligent Sytems, 7th edn. Prentice Hall, Englewood Cliffs (2004)

    Google Scholar 

  84. Walsh, P., Cunningham, P., Rothenberg, S.J., O’Doherty, S., Hoey, H., Healy, R.: An artificial neural network ensemble to predict disposition and length of stay in children presenting with bronchiolitis. Eur. J. Emerg. Med. 11, 259–564 (2004)

    Article  Google Scholar 

  85. Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  86. Wooldridge, M.: An Introduction to Multi-Agent Systems, p. 366. Wiley (2002)

    Google Scholar 

  87. Wongsuphasawat, K., Gotz, D.: Outflow: visualizing patient flow by symptoms and outcome. IEEE, Providence (2011)

    Google Scholar 

  88. Yu, H., Shen, Z., Leung, C., Miao, C., Lesser, V.: A survey of multi-agent trust management systems. IEEE Access 1(1), 35–50 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support for this research by grants from the ARUB program under the jurisdiction of the General Direction of Scientific Research (DGRST) (Tunisia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hela Ltifi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Ltifi, H., Ayed, M.B. (2016). Visual Intelligent Decision Support Systems in the Medical Field: Design and Evaluation. In: Holzinger, A. (eds) Machine Learning for Health Informatics. Lecture Notes in Computer Science(), vol 9605. Springer, Cham. https://doi.org/10.1007/978-3-319-50478-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50478-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50477-3

  • Online ISBN: 978-3-319-50478-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics