Skip to main content

Approximating Parikh Images for Generating Deterministic Graph Parsers

  • Conference paper
  • First Online:
Book cover Software Technologies: Applications and Foundations (STAF 2016)

Abstract

The Parikh image of a word abstracts from the order of its letters. Parikh’s famous theorem states that the set of Parikh images of a context-free string language forms a semilinear set that can be effectively computed from its grammar. In this paper we study the computation of Parikh images for graph grammars defined by contextual hyperedge replacement (CHR). Our motivation is to generate efficient predictive top-down (PTD) parsers for a subclass of CHR grammars. We illustrate this by describing the subtask that identifies the nodes of the input graph that parsing starts with.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to space restrictions, that paper describes only the HR case.

  2. 2.

    [n] denotes the set \(\{1, \dots , n\}\).

  3. 3.

    Note that a node with just a leaving \(\textit{goto}\) edge can actually not be a starting node although this is indicated by \(\psi ''(S^x_{\textsf {i}})\). The reason for this over-approximation is that rule \([\textsf {g}]_{x}\) can be be applied to \(D(\bullet )\) even if there is no additional node that could be used as a context node, which is actually necessary for applying CHR rule g.

References

  1. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  2. Costagliola, G., Chang, S.K.: Using linear positional grammars for the LR parsing of 2-D symbolic languages. Grammars 2(1), 1–34 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Drewes, F., Hoffmann, B.: Contextual hyperedge replacement. Acta Informatica 52(6), 497–524 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Drewes, F., Hoffmann, B., Minas, M.: Predictive top-down parsing for hyperedge replacement grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 19–34. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21145-9_2

    Chapter  Google Scholar 

  5. Esparza, J., Kiefer, S., Luttenberger, M.: Newton’s method for \(Omega\)-continuous semirings. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 14–26. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70583-3_2

    Chapter  Google Scholar 

  6. Fischer, P.C., Meyer, A.R., Rosenberg, A.L.: Counter machines and counter languages. Math. Syst. Theor. 2, 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  7. Franck, R.: A class of linearly parsable graph grammars. Acta Informatica 10(2), 175–201 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huynh, T.-D.: The complexity of semilinear sets. In: Bakker, J., Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 324–337. Springer, Heidelberg (1980). doi:10.1007/3-540-10003-2_81

    Chapter  Google Scholar 

  9. Ibarra, O.H., Seki, S.: Characterizations of bounded semilinear languages by one-way and two-way deterministic machines. Int. J. Found. Comput. Sci. 23(6), 1291–1305 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kaul, M.: Practical applications of precedence graph grammars. In: Ehrig, H., Nagl, M., Rozenberg, G., Rosenfeld, A. (eds.) Graph Grammars 1986. LNCS, vol. 291, pp. 326–342. Springer, Heidelberg (1987). doi:10.1007/3-540-18771-5_62

    Chapter  Google Scholar 

  11. Lavado, G.J., Pighizzini, G., Seki, S.: Converting nondeterministic automata and context-free grammars into Parikh equivalent deterministic automata. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 284–295. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31653-1_26

    Chapter  Google Scholar 

  12. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  13. To, A.W.: Model checking infinite-state systems: generic and specific approaches. Ph.D. thesis, School of Informatics, University of Edinburgh, August 2010

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for the valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Minas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Drewes, F., Hoffmann, B., Minas, M. (2016). Approximating Parikh Images for Generating Deterministic Graph Parsers. In: Milazzo, P., Varró, D., Wimmer, M. (eds) Software Technologies: Applications and Foundations. STAF 2016. Lecture Notes in Computer Science(), vol 9946. Springer, Cham. https://doi.org/10.1007/978-3-319-50230-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50230-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50229-8

  • Online ISBN: 978-3-319-50230-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics