Skip to main content

Weakly Represented Families in Reverse Mathematics

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10010))

Abstract

We study the proof strength of various second order logic principles that make statements about families of sets and functions. Usually, families of sets or functions are represented in a uniform way by a single object. In order to be able to go beyond the limitations imposed by this approach, we introduce the concept of weakly represented families of sets and functions. This allows us to study various types of families in the context of reverse mathematics that have been studied in set theory before. The results obtained witness that the concept of weakly represented families is a useful and robust tool in reverse mathematics.

R. Hölzl and F. Stephan were supported in part by MOE/NUS grants R146-000-181-112 and R146-000-184-112 (MOE2013-T2-1-062); D. Raghavan was supported in part by MOE/NUS grant R146-000-184-112 (MOE2013-T2-1-062). Work on this article begun as J. Zhang’s Undergraduate Research Opportunities Programme project while J. Zhang was an undergraduate students of NUS and R. Hölzl worked at NUS financed by MOE/NUS grant R146-000-184-112 (MOE2013-T2-1-062).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that to simplify notation, we do not explicitly define total characteristic functions of the sets \(A_e\), \(e \in \omega \), or the enumeration of a set that represents these functions as a weakly represented family. But since the elements of every \(A_e\) are enumerated in increasing order by the given procedure, it is easy to convert it into one defining the enumeration of such a set.

References

  1. Bartoszyński, T., Judah, H.: Set Theory: On the Structure of the Real Line. A K Peters Ltd., Wellesley (1995)

    MATH  Google Scholar 

  2. Blass, A.: Combinatorial cardinal characteristics of the continuum. In: Foreman, M., Kanamori, A. (eds.) Handbook of Set Theory, pp. 395–489. Springer, Dordrecht (2010). doi:10.1007/978-1-4020-5764-9_7. vols. 1, 2, 3

    Chapter  Google Scholar 

  3. Brendle, J., Brooke-Taylor, A., Ng, K.M., Nies, A.: An analogy between cardinal characteristics and highness properties of oracles. In: Proceedings of the 13th Asian Logic Conference, Guangzhou, China, 16–20 September 2013, pp. 1–28. World Scientific (2013)

    Google Scholar 

  4. Cholak, P.A., Jockusch Jr., C.G., Slaman, T.A.: On the strength of Ramsey’s theorem for pairs. J. Symbolic Logic 66(1), 1–55 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chong, C.T., Lempp, S., Yang, Y.: On the role of the collection principle for \({\rm \Sigma ^{0}_{2}}\) formulas in second order reverse mathematics. Proc. Am. Math. Soc. 138, 1093–1100 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chong, C.T., Slaman, T.A., Yang, Y.: \(\Pi ^1_1\)-conservation of combinatorial principles weaker than Ramsey’s theorem for pairs. Adv. Math. 230, 1060–1077 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Demuth, O., Kučera, A.: Remarks on \(1\)-genericity, semigenericity and related concepts. Commentationes Math. Univ. Carol. 028(1), 85–94 (1987)

    MathSciNet  MATH  Google Scholar 

  8. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  9. Friedberg, R.: A criterion for completeness of degrees of unsolvability. J. Symbolic Logic 22, 159–160 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  10. Friedberg, R.: Three theorems on recursive enumeration. J. Symbolic Logic 23, 309–316 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hechler, S.H.: On the existence of certain cofinal subsets of \(^{\omega }\omega \). In: Axiomatic Set Theory Proceedings of Symposia in Pure Mathematics, Part II, University of California, Los Angeles, California, 1967, vol. 13, pp. 155–173. American Mathematical Society, Providence (1974)

    Google Scholar 

  12. Hirschfeldt, D.R.: Slicing the Truth. World Scientific, River Edge (2015)

    Google Scholar 

  13. Hirschfeldt, D.R., Shore, R.A., Slaman, T.A.: The atomic model theorem and type omitting. Trans. Am. Math. Soc. 361, 5805–5837 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hölzl, R., Jain, S., Stephan, F.: Inductive inference and reverse mathematics. Ann. Pure Appl. Logic (2016). http://dx.doi.org/10.1016/j.apal.2016.06.002

  15. Jockusch Jr., C.G.: Upward closure and cohesive degrees. Isr. J. Math. 15, 332–335 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jockusch, C.G., Soare, R.I.: \(\Pi _1^0\) classes and degrees of theories. Trans. Am. Math. Soc. 173, 33–56 (1972)

    MATH  Google Scholar 

  17. Jockusch, C.G., Stephan, F.: A cohesive set which is not high. Math. Logic Q. 39, 515–530 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kjos-Hanssen, B., Merkle, W., Stephan, F.: Kolmogorov complexity and recursion theorem. Trans. Am. Math. Soc. 263, 5465–5480 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kleene, S.C., Post, E.L.: The uppersemilattice of degrees of recursive unsolvability. Ann. Math. 59, 379–407 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lacombe, D.: Sur le semi-réseau constitué par les degrès d’indecidabilité récursive. Comptes rendus hebdomadaires des séances de l’Académie des Sciences 239, 1108–1109 (1954)

    MATH  Google Scholar 

  21. van Lambalgen, M.: The axiomatization of randomness. J. Symbolic Logic 55, 1143–1167 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Martin, D.A.: Classes of recursively enumerable sets and degrees of unsolvability. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 12, 295–310 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mileti, J.: Partition theorems and computability theory, Ph.D. dissertation, University of Illinois at Urbana-Champaign (2004)

    Google Scholar 

  24. Miller, A.W.: Some properties of measure and category. Trans. Am. Math. Soc. 266, 93–114 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nies, A.: Computability and Randomness. Oxford Science Publications, Oxford (2009)

    Book  MATH  Google Scholar 

  26. Odifreddi, P.: Classical Recursion Theory. Elsevier, North Holland (1989)

    MATH  Google Scholar 

  27. Odifreddi, P.: Classical Recursion Theory, vol. 2. Elsevier, North Holland (1999)

    MATH  Google Scholar 

  28. Rupprecht, N.: Relativized Schnorr tests with universal behavior. Arch. Math. Logic 49(5), 555–570 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shelah, S.: Proper and Improper Forcing. Perspectives in Mathematical Logic, 2nd edn. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  30. Simpson, S.G.: Subsystems of Second Order Arithmetic, 2nd edn. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  31. Spector, C.: On degrees of unsolvability. Ann. Math. 64, 581–592 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  32. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Heidelberg (1987)

    Book  MATH  Google Scholar 

  33. Stephan, F.: Recursion theory, lecture notes, school of computing, National University of Singapore, Technical report TR10/12 (2012)

    Google Scholar 

  34. Liang, Y.: Lowness for genericity. Arch. Math. Logic 45, 233–238 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank C.T. Chong, Wei Li and Yue Yang for fruitful discussions and suggestions. They are also grateful to the anonymous referee for detailed and helpful comments, in particular for pointing out a simplification of the proof of Theorem 29.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Stephan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hölzl, R., Raghavan, D., Stephan, F., Zhang, J. (2017). Weakly Represented Families in Reverse Mathematics. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds) Computability and Complexity. Lecture Notes in Computer Science(), vol 10010. Springer, Cham. https://doi.org/10.1007/978-3-319-50062-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50062-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50061-4

  • Online ISBN: 978-3-319-50062-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics