Learning Domain Labels Using Conceptual Fingerprints: An In-Use Case Study in the Neurology Domain

  • Zubair Afzal
  • George Tsatsaronis
  • Marius Doornenbal
  • Pascal Coupet
  • Michelle Gregory
Conference paper

DOI: 10.1007/978-3-319-49004-5_47

Part of the Lecture Notes in Computer Science book series (LNCS, volume 10024)
Cite this paper as:
Afzal Z., Tsatsaronis G., Doornenbal M., Coupet P., Gregory M. (2016) Learning Domain Labels Using Conceptual Fingerprints: An In-Use Case Study in the Neurology Domain. In: Blomqvist E., Ciancarini P., Poggi F., Vitali F. (eds) Knowledge Engineering and Knowledge Management. EKAW 2016. Lecture Notes in Computer Science, vol 10024. Springer, Cham

Abstract

Modelling a science domain for the purposes of thematically categorizing the research work and enabling better browsing and search can be a daunting task, especially if a specialized taxonomy or ontology does not exist for this domain. Elsevier, the largest academic publisher, faces this challenge often, for the needs of supporting the journals submission system, but also for supplying ScienceDirect and Scopus, two flagship platforms of the company, with sufficient metadata, such as conceptual labels that characterize the research works, which can improve the user experience in browsing and searching the literature. In this paper we describe an Elsevier in-use case study of learning appropriate domain labels from a collection of 6, 357 full text articles in the neurology domain, exploring different document representations and clustering mechanisms. Besides the baseline approaches for document representation (e.g., bag-of-words) and their variations (e.g., n-grams), we employ a novel in-house methodology which produces conceptual fingerprints of the research articles, starting from a general domain taxonomy, such as the Medical Subject Headings (MeSH). A thorough empirical evaluation is presented, using a variety of clustering mechanisms and several validity indices to evaluate the resulting clusters. Our results summarize the best practices in modelling this specific domain and we report on the advantages and disadvantages of using the different clustering mechanisms and document representations that were examined, with the aim to learn appropriate conceptual labels for this domain.

Keywords

Document labeling Document clustering Conceptual fingerprints Domain taxonomy Neurology domain Clustering evaluation Best practices 

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Zubair Afzal
    • 1
  • George Tsatsaronis
    • 1
  • Marius Doornenbal
    • 1
  • Pascal Coupet
    • 1
  • Michelle Gregory
    • 1
  1. 1.Content and Innovation Group, Operations DivisionElsevier B.V.AmsterdamThe Netherlands

Personalised recommendations