Skip to main content

Standard Sequent Calculi for Lewis’ Logics of Counterfactuals

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10021))

Included in the following conference series:

Abstract

We present new sequent calculi for Lewis’ logics of counterfactuals. The calculi are based on Lewis’ connective of comparative plausibility and modularly capture almost all logics of Lewis’ family. Our calculi are standard, in the sense that each connective is handled by a finite number of rules with a fixed and finite number of premises; internal, meaning that a sequent denotes a formula in the language, and analytical. We present two equivalent versions of the calculi: in the first one, the calculi comprise simple rules; we show that for the basic case of logic \(\mathbb {V}\), the calculus allows for syntactic cut-elimination, a fundamental proof-theoretical property. In the second version, the calculi comprise invertible rules, they allow for terminating proof search and semantical completeness. We finally show that our calculi can simulate the only internal (non-standard) sequent calculi previously known for these logics.

B. Lellmann—Funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 660047.

G.L. Pozzato—Partially supported by the project “ExceptionOWL”, Università di Torino and Compagnia di San Paolo, call 2014 “Excellent (young) PI”.

M. Girlando—Partially supported by the LabEx Archimède, AMU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is worth noticing that in turn the connective \(\preccurlyeq \) can be defined in terms of .

  2. 2.

    Employing this notation, satisfiability of a \( \preccurlyeq \)-formula in a model becomes the following: \(x \Vdash A\preccurlyeq B \) iff for all . \( \alpha \Vdash ^{\forall } \lnot B \) or \( \alpha \Vdash ^{\exists } A \).

  3. 3.

    Lewis’ original presentation in [14] is slightly different: he did not assume the general condition on sphere models that for every : \(\alpha \ne \emptyset \), and formulated normality as and weak centering as normality plus , if \(\alpha \ne \emptyset \) then \(w \in \alpha \). Furthermore, note that absoluteness can be equally stated as local absoluteness: .

  4. 4.

    Actually, the rules \(\mathsf {Con}_S\) and \(\mathsf {Con}_B\) are not needed for completeness (refer to Sect. 6); we have included them in our official formulation of the calculi for technical convenience.

  5. 5.

    A quick argument: once all non redundant \( \mathsf {com}^{\mathsf {c}} \) have been applied, it holds that either \( \varSigma _{i} \subseteq \varSigma _{j} \) or \( \varSigma _{j} \subseteq \varSigma _{i} \); we then order the blocks: \( \varSigma _{1} \subseteq \varSigma _{2} \subseteq ... \subseteq \varSigma _{n} \).

  6. 6.

    The proof uses in an essential way the fact that a backwards application of \( \mathsf {jump}\) reduces the modal degree of a sequent. Although rule \( \mathsf {A}^\mathsf {i}\) plays a similar role as \( \mathsf {jump}\), it does not reduce the modal degree when applied backwards. Thus we need another argument for handling logics including \(\mathbb {A}\); this is object of further investigation.

References

  1. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested sequent calculi for normal conditional logics. J. Log. Comput. 26(1), 7–50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baltag, A., Smets, S.: The logic of conditional doxastic actions. Texts Logic Games 4, 9–31 (2008). Special Issue on New Perspectives on Games and Interaction

    MathSciNet  Google Scholar 

  3. Board, O.: Dynamic interactive epistemology. Games Econ. Behav. 49(1), 49–80 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ciabattoni, A., Metcalfe, G., Montagna, F.: Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions. Fuzzy Sets Syst. 161, 369–389 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Delgrande, J.P.: On first-order conditional logics. Artif. Intell. 105(1), 105–137 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Friedman, N., Halpern, J.Y.: On the complexity of conditional logics. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) KR 1994, pp. 202–213. Morgan Kaufmann (1994)

    Google Scholar 

  7. Gent, I.P.: A sequent or tableaux-style system for Lewis’s counterfactual logic \(\mathbb{VC}\). Notre Dame J. Formal Logic 33(3), 369–382 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ginsberg, M.L.: Counterfactuals. Artif. Intell. 30(1), 35–79 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-based conditional logics: PCL and its extensions. ACM Trans. Comput. Logic (TOCL) 10(3), 21 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Grahne, G.: Updates and counterfactuals. J. Logic Comput. 8(1), 87–117 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lellmann, B.: Sequent calculi with context restrictions and applications to conditional logic. Ph.D. thesis, Imperial College London. http://hdl.handle.net/10044/1/18059

  13. Lellmann, B., Pattinson, D.: Sequent Systems for Lewis’ Conditional Logics. In: Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 320–332. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33353-8_25

    Chapter  Google Scholar 

  14. Lewis, D.: Counterfactuals. Blackwell, Oxford (1973)

    MATH  Google Scholar 

  15. Negri, S., Olivetti, N.: A sequent calculus for preferential conditional logic based on neighbourhood semantics. In: Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 115–134. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24312-2_9

    Chapter  Google Scholar 

  16. Negri, S., Sbardolini, G.: Proof analysis for Lewis counterfactuals. Rev. Symbolic Logic 9(1), 44–75 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Olivetti, N., Pozzato, G.L.: A standard internal calculus for Lewis’ counterfactual logics. In: Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 270–286. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24312-2_19

    Chapter  Google Scholar 

  18. Pattinson, D., Schröder, L.: Generic modal cut elimination applied to conditional logics. Log. Methods Comput. Sci. 7(1: 4), 1–28 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Poggiolesi, F.: Natural deduction calculi and sequent calculi for counterfactual logics. Stud. Logica 104, 1003–1036 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. de Swart, H.C.M.: A Gentzen- or Beth-type system, a practical decision procedure and a constructive completeness proof for the counterfactual logics \(\mathbb{VC}\) and \(\mathbb{VCS}\). J. Symbolic Logic 48(1), 1–20 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Girlando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L. (2016). Standard Sequent Calculi for Lewis’ Logics of Counterfactuals. In: Michael, L., Kakas, A. (eds) Logics in Artificial Intelligence. JELIA 2016. Lecture Notes in Computer Science(), vol 10021. Springer, Cham. https://doi.org/10.1007/978-3-319-48758-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48758-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48757-1

  • Online ISBN: 978-3-319-48758-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics